
Abstract

The main objective of the present paper is a generalization of some classical results for curved beams 
made of heterogeneous materials. We consider a beam made of nonhomogeneous, isotropic, linearly 
elastic material. The elastic parameters depend on the cross-sectional coordinates only. Our investigations 
include the determination of the normal stress (i.e., the generalization of the Grashof formula), the 
shearing stress and the curvature change. Interestingly, our newly established formulae have the same 
structure as the classical ones. We conclude with numerical examples which illustrate the applicability 
of our results.
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Introduction

The majority of the textbooks on strength of materials deal 
with curved beams made of homogeneous material. Formulae are 
presented for the calculation of the normal stress, the shearing stress, 
the change of curvature and the strain energy stored in the curved 
beam. In this paper our main objective is to generalize these classical 
results for a curved beam made of heterogeneous isotropic materials 
By assumption the elastic parameters, i.e., the Young modulus and 
the Poisson number, depend on the cross sectional coordinates, but 
are independent of the axial coordinate. Figure 1 shows a part of the 
beam and the applied orthogonal curvilinear coordinates. Our most 
important assumptions are as follows:

1.	 The displacements and deformations are small;
2.	 The curved beam has a uniform cross section and a constant 

radius;
3.	 The cross section is symmetric with respect to the axis ζ;
4.	 The Young modulus E and the Poisson number v satisfy the 

following relations: 

1.	 The Young modulus is the same in tension and compression;
2.	 The magnitude of the normal stress σξ is much greater than those 

of the stress components and  σζ;
3.	 the temperature is constant (there is no heat effect).

These assumptions are associated with the displacement hypotheses 
detailed in the following section.

Displacement Hypotheses

The orthogonal curvilinear coordinates are shown in Figure 1. We 
shall assume that (a) the crosssections are symmetric with respect 
to the axis  [consequently the beam is symmetric with respect to the 
coordinate plane (ξ = s, ζ)] (b) the E-weighted first moment of the 
cross section with respect to the axis  – this quantity is denoted by 
Qen – is equal to zero:

The axis ξ = s intersects the plane of the cross section in the point 
Ce, which is referred to as the E-weighted center of the cross section 
(in contrast to the point C, which is the geometrical center of the cross 
section).

The coordinate line ξ = s is the E-weighted centerline (or centerline 
in short) of the curved beam, and s is the corresponding arc coordinate.

We next introduce the concepts of E-weighted area and moment of
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inertia with respect to the axis

These concepts have been introduced for a straight beam in paper 
[1] by Baksa and Ecsedi.

The unit tangent vectors eξ(s), en and eζ(s) of the coordinate lines 
ξ, n, and ζ are also shown in Figure 1. Let R be the radius of the 
E-weighted centerline. It is easy to check that eξ(s), and eζ(s) satisfy 
the following relations

It is also obvious that the operator ∆ takes the form:

We shall assume that (a) the cross section has a translation and 
a rigid body rotation about the axis , i.e., it remains a plane surface 
during the deformation, and (b) the deformed centerline remains 
perpendicular to the cross section. Under these conditions  
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Figure 1: The unit tangent vectors eξ(s), en and eζ(s) of the coordinate 
lines ξ, n, and ζ.

1 . (4)
1s

e e e e

R

ξ η ζ
η η

ηζ ζ
∂ ∂ ∂ ∂

∇ = + + +
∂ ∂ ∂ ∂+

1 1, constant
de de

e e and e e e
ds R ds R

ξ ζ
ζ ξ ζ ξ η=− = × = =

(1)

(2)

(3)

(4)

http://dx.doi.org/10.15344/2455-7412/2015/107
http://dx.doi.org/10.15344/2455-7412/2015/107
http://dx.doi.org/10.15344/2455-7412/2015/107
http://dx.doi.org/10.15344/2014/ijgdt/101


Int J Mech Syst Eng                                                                                                                                                                                                IJMSE, an open access journal                                                                                                                                          
ISSN: 2455-7412                                                                                                                                                                                                     Volume 1. 2015. 107                   

is the displacement field on the cross section, in which uo = uoeξ + 
woeζ and                      are the displacement vector and the rotation on 
the E-weighted centerline, respectively. As is well known

is the rigid body body rotation. Consequently

from where

where at least one factor in the dyadic products denoted, for brevity, 
by ((...)) is perpendicular to eξ, we have

are the axial strain and the curvature on the E-weighted centerline.

Formulae for the normal stress

Generalization of the Grashof formula. The E-weighted reduced area, 
first moment and moment of inertia are defined by the following 
relations:

It is clear that the axial force and the bending moment are

Here, due to the inequality                                                                                         ,equation 
is the Hooke law. Upon substitution of the Hook law and then equation 
(10) into (12) we have 

As for the bending moment, in a similar way we obtain

After solving equation system (13) we have Є0ξ and κ0 in terms of 
the axial force and the bending moment:

Let us now substitute these solutions into equation (9) so that we 
can get the axial strain:

With the knowledge of the axial strain

is the normal stress.
In what follows, we attempt to simplify the above formula for the 

normal stress. First we shall clarify how AeR, QeR and IeR are related to 
Ae, Qen and Ien. Using the power series of fraction R/ (R + ζ) we have

because Qen = 0. For the denominator in equation (16) the following 
approximation holds

Using this result we can rewrite formula (15):
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If we use approximations (17) we can check the following equations

Substituting the last two formulae into (20) and the result into the 
Hooke law we have

This formula is the generalization of the Grashof formula for the 
case of cross sectional inhomogeneity.

A formula for the normal stress assuming pure bending. English 
textbooks contain a formula for the normal stress under the 
assumption of pure bending – see for instance equation (4.71) p. 224 
in [2]. In this subsection it is our aim to generalize the cited equation 
for heterogenous curved beams. Figure 2 shows the cross section 
and the geometrical meaning of some notational conventions: ζo is 
the coordinate of the neutral axis with radius R, and the radius of an 
arbitrary point P of the cross section ζ with coordinate  is r = R + ζ. 
Based on equation (16) for pure bending,

is the formula for the normal stress. We would like to manipulate it 
into a form similar to the one cited above.

First we shall determine the location of the neutral axis. It follows 
from condition σ3 = 0 which needs to be satisfied on the neutral axis 
that

from where

is the radius that belongs to the neutral axis. Upon substitution of 
AeR and QeR from (11), the radius R of the neutral axis assumes the 
form

For E(η, ζ ) =constant, the above equation coincides with formula 
(4.66) p. 222 in [2]. Now we shall proceed with the determination of 
the normal stress. Using equation (26), the factor in parentheses in 
equation (23) can be rewritten into the form

If we use the inequality AeRIeR >> SeR and substitute back the above 
difference into equation (23), we obtain

The last open question is how to transform the fraction R/IeR into a 
suitable form. The following equation details the transformation step 
by step: 

It is worth introducing the notation e = -ζo. Upon substitution of 
the result obtained into formula (29) for the normal stress we arrive 
at its final form:

This equation is the generalization of formula (4.71) p. 224 in [2] 
valid for the homogenous case for curved beams with cross sectional 
inhomogeneity.

A formula for the shear stress
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notational conventions.
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Our goal in this subsection is to derive a closed form solution for 
calculating the shear stress. We shall use equilibrium equations for 
this purpose. This approach results in a relatively simple formula; 
however, it has the disadvantage that the kinematic equations are 
not satisfied. The basic idea is well known from the theory of straight 
beams: we divide a short portion of the beam into two parts and then 
analyze the equilibrium conditions of one part.

Consider Figure 3 which shows a finite portion of the curved beam 
with cross sectional inhomogeneity. The left cross section with arc 
coordinate sB is fixed, coordinate s > sB of the right cross section is 
regarded as a parameter. We shall use the following assumptions:

1.	 The shear stresses  τξ = τηξeη + τζξeζ on the line  ζ = ζ = constant 
intersect each other in one point which coincides with the 
intersection point of the tangents to the contour of the cross 
section at  ζ = ζ = constant. Consequently, τηξ = -τηξ(-η), which 
means that τηξ(η) is an odd function of η.

2.	 The shear stress τηξ is constant if  ζ = constant.
3.	 The bending moment M and the shear force V are related to 

each other via equation 

        which is an equilibrium condition.
4.	 The normal stress σξ  can be calculated by equation (22) for which 

we assume N = 0 – there is no axial force in the cross section 
considered.

For calculating the shear stresses τηξ let us consider the part of the 
beam with outlines drawn thick in Figure 3. It is bounded by the 
marked endfaces AB, A, the cylinder with radius ρo + ζ is a part of the 
lateral surface. By assumption the lateral surface is unloaded. 

The equilibrium equation for the part of the beam considered is of 
the form

If we take into account that the shear stress -τξζ(ζ)eζ(s) is constant on 
the cylindrical surface with radius R + ζ , and the fact that

is the surface element, then it follows that the last integral in (33) is the 
resultant of the shear stresses.

Let us differentiate equation (33) with respect to s. Then (a) 

substitute the derivatives of the unit vectors eξ and eζ with respect to s; 
(b) take into account that (1) the integral over AB is constant therefore 
its derivative is zero; (2) τηξ is an odd function of η therefore its integral 
is zero; (3) the derivative of an integral with respect to the upper limit 
is the integrand. Then

If we now dot multiply throughout by eξ we obtain

Let emax be the distance of the top of the cross section from the point 
Ce. This is always less than R. The area A can be given as a product 
v(ζ)h(ζ) where h(ζ) is less than emax. Consequently

is an upper limit of the second integral in (34). Really if we take into 
account that the shear stress is taken on the line ζ (instead of being 
taken at inner points of A) we can readily check the validity of the 
previous statement. On the basis of this estimation the second term in 
(34) can be neglected if we compare it to the third term. Omitting this 
term results in the following equation

for the calculation of the shear stress             After rearranging we 
obtain the following average value

Upon substitution of the normal stress from (22) – N = 0 by 
assumption – we have

A further transformation yields

Introducing the notations

and

and substituting (32) we obtain

which is a formula for the average value of the shear stress. This result 
is a generalization of a classical formula valid for curved beams made
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Figure 3: A finite portion of the curved beam with cross sectional 
inhomogeneity
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of homogenous material – see pp. 358-359 in [3, 2002].

Curvature change, strain energy

In the present subsection [the radius of curvature] {a point} on the 
E-weighted centerline before and after deformation are denoted by [Ro 
and R] {Po and P}. The angle formed by the tangent to the E-weighted 
centerline at Po with the horizontal axis is  ψo. Its change during 
deformation is  ψoη – the rigid body rotation. The calculation of the 
curvature change is based on Figure 4 which shows all the quantities 
mentioned.

The infinitesimal arc element dso on the E-weighted centerline 
before deformation changes to ds. It is clear that

is the axial strain on the E-weighted centerline. Consequently

Using the above equation we can manipulate the formula for the 
curvature change:

Here

A comparison of equations (10), (42) and (43) yields

Substituting ĸo from (14) and taking into account that in the present 
case N = 0 and QeR  <<AeRIeR we have

that is

Now we proceed to determine the strain energy stored in the beam. It 
is not too difficult to check using equation (45) that the angle change 
dψ  due to the bending moment is

Consequently

is the work done by the bending moment exerted on an infinitesimal 
portion of the beam. Let L be the length of the E-weighted centerline. 
After integration

Numerical examples

Example 1. Figure 5 shows the cross-section of the curved beam 
considered. We assume that the beam is subjected to pure bending M 
= M eη ; M = 100 Nm. The geometric dimensions are all given in Figure 
5. The lower part of the beam is made of steel and the upper part of the 
beam is made of aluminium. The corresponding material parameters 
are E1 = 2:1×105 MPa and E2 = 7 ×104 MPa, in that order. Our aim 
is to depict graphically the normal stress distribution as a function 
of ζ using the three formulae derived in the previous sections. This 
allows us to compare the various results. It would also be interesting 
to check the difference between these formulae regarding the radius 
of the neutral axis.

First we determine the ordinate zC of the E-weighted centerline 
in coordinate system γz. Since the E-weighted first moment of the 
cross section with respect to the axis η should be zero, the following 
equation holds:

Consequently

With the knowledge of zC one can read off from Figure 5 that

Before computing the stresses sought we shall set up appropriate 
formulae for the E-weighted geometrical quantities AeR, QeR, Ieη and 
IeR. Recalling equation (11)1 we can write 
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Figure 4: The calculation of the curvature change is based on 
which shows all the quantities mentioned.
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Figure 5: The cross-section of the curved beam considered
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Regarding the E-weighted reduced first moment of the cross-
section, equation (11)2 yields

Using the parallel axis theorem, we can determine Ieη as

Therefore, recalling (11)3 and utilizing equation (54) we can 
establish a formula for the E-weighted reduced moment of inertia:

Substituting now a, b1, b2, R, A1, E1, A2, E2, ζk, ζ1 and ζ2 into equations 
(52)-(55) we obtain the following numerical values:

With these results we can compute the normal stress 6 using 
Eqs. (16) – this formula has no simplifications, it is exact under the 
displacement and stress hypotheses –, (22) – this is a generalization of 
the Grashof formula – and (31) – this a generalization of the formula 
that can be found in English textbooks on Strengths of Materials. 
The computational results are presented in Table 1 and graphically in 
Figure 6. It is clear that the results obtained by the use of the Grashof 
formula and by Eq. (31) almost coincide.

As regards Figure 6 the graphs representing the exact solution, the 
solution obtained by the use of Eq. (22) and the solution calculated 
with Eq. (31) are drawn in blue, red and green. Observe that the red 
and green curves coincide almost completely.

As for the ordinate of the neutral axis, by setting                     ,Eqs. 
(16), (22) and (31) yield -0.8004mm,  -0.7771mm and -0.7845mm, 
respectively. We note that the latter result is exactly the same as the 
value that can be obtained by using Eq. (26).

Example 2. Figure 7 shows a cross-section of the curved beam 
considered - observe that the beam is the same as in the previous 
example. Let us assume that the cross-section is subjected to a shear 
force V=10kN. The shear stress       can be calculated using Eqs.(38) 
and (39). Upon substitution of   and  (56)2,5 into (38a)1 we have
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Computed by using Normal stress   

ζ[mm] Eq. (16) Eq. (22) Eq. (31) 

-12.0 -28.693 -29.332 -29.281

-11.0 -25.763 -26.342 -26.291

-10.0 -22.915 -23.435 -23.384

-9.0 -20.144 -20.608 -20.557

-8.0 -17.448 -17.857 -17.806

-7.0 -14.824 -15.179 -15.128

-6.0 -12.270 -12.573 -12.521

-5.0 -9.781 -10.033 -9.982

-4.0 -7.357 -7.559 -7.507

-3.0 -4.993 -5.148 -5.096

-2.0 -2.689 -2.796 -2.744

-1.0 -0.442 -0.503 -0.451

0.0 1.751 1.734 1.786

1.0 3.890 3.917 3.970

2.0 5.979 6.048 6.101

3.0 8.018 8.129 8.183

4.0 10.011 10.163 10.216

4.0 3.337 3.387 3.405

5.0 3.986 4.049 4.067

6.0 4.620 4.696 4.714

7.0 5.239 5.329 5.347

8.0 5.845 5.947 5.965

9.0 6.438 6.552 6.570

10.0 7.018 7.144 7.162

11.0 7.585 7.227 7.741

12.0 8.141 8.289 8.307

13.0 8.684 8.844 8.862

14.0 9.216 9.387 9.405

15.0 9.738 9.919 9.937

16.0 10.248 10.440 10.458

17.0 10.749 10.951 10.969

18.0 11.239 11.451 11.469

19.0 11.719 11.941 11.960

20.0 12.191 12.422 12.440

0)( =ζσξ

9
3

2 2 8

9.5024 10 9.7615 10 .
82 1.447731712 10

eR

eR

I
R A

α −×
= = = ×

× ×

Table 1: Grashof formula computational results. 
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(53)

(52)
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We get in the same way that

With       ,                and             we can determine the shear stress from 
(39): 

Consequently

The values in Table 2 are computed using equations (57) and (58).

We should remark that formula (39) for the shear stress provides 
an average value – it has been established by using equilibrium 
conditions. Consequently, the values obtained using this equation 
are in all probability more accurate if the modulus of elasticity is 
independent of η, i.e., if it depends on ζ only.

Conclusion

In this paper we have generalized some classical results valid for 
curved beams made of homogeneous and isotropic material for the 
case when the curved beam is made of heterogeneous and isotropic 
material, under the assumption that the elastic parameters, i.e., 
the Young modulus and the Poisson number, depend on the cross-
sectional coordinates, but are independent of the axial coordinate. 
We remark that the Poisson number has played no role in the 
investigations.

By applying the well known displacement hypotheses we have 
established (1) three formulae for calculating the normal stress, (2) 
a formula for the shear stress, and (3) formulae for the change of 
curvature and the strain energy stored in the beam.

Except the very first formula for the normal stress -- see Eq. (16) 
-- all the others are generalizations of classical results and each can be 
applied in paper-and-pencil calculations.

	
Two numerical examples are presented to illustrate the applicability 

of the formulae.

Int J Mech Syst Eng                                                                                                                                                                                                IJMSE, an open access journal                                                                                                                                          
ISSN: 2455-7412                                                                                                                                                                                                     Volume 1. 2015. 107                   

Citation: Kiss L, Szeidl G (2015) Stresses in Curved Beams Made of Heterogeneous Materials. Int J Mech Syst Eng 1: 107. doi: http://dx.doi.org/10.15344/2455-
7412/2015/107

     Page 7 of 8

Figure 6: Graphical representation of Grashof formula computational results. Figure 7: Cross-section of the curved beam.
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   τξζ[N/mm2  ]  ζ[mm]

0.0108 20

-1.9489 18

-3.8227 16

-5.5984 14

-7.2621 12

-8.7982 10

-10.1892 8

-11.4155 6

-12.4549 4

-12.4549 4

-14.3734 2

-15.5130 0

-15.8015 -2

-15.1291 -4

-13.3668 -6

-10.3686 -8

-5.9672 -10

0.0295 -12
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