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Introduction

Epigenetic silencing of tumor-related genes by CpG island 
methylation has been reported recently as a genetic alteration in 
gastric carcinoma (GC) [1]. CpG islands are 0.5- to 2-kb regions 
rich in cytosine-guanine dinucleotides and are present in the 5’ 
promoter region of approximately 40-50% of human genes [2]. DNA 
methylation has an important role in the transcriptional repression 
of imprinted genes and genes on inactivated X chromosomes, 
maintaining the integrity of chromosomes or acting as a defense 
against highly repeated mobile elements [3-6]. Aberrant methylation 
of CpG islands, which are normally protected from DNA methylation, 
is associated with DNA structural changes and consequent gene 
inactivation. Aberrant methylation of promoter CpG islands is an 
important mechanism for gene inactivation as an alternative to gene 
mutation or deletion in tumorigenesis [7,8].

GC has been shown to exhibit a high frequency of DNA 
hypermethylation [9]. Genes that are inactivated by CpG island 
hypermethylation, including those encoding tumor suppressors, cell-
cycle regulators, tissue invasion-related proteins, and DNA mismatch 
repair proteins, have been reported in GC [10.11].

MicroRNAs (miRNAs) are non–protein-coding small RNAs 
ranging in size from 19 to 25 nucleotides that are cleaved from 70- 
to 100-nucleotide hairpin pre-miRNA precursors [12]. miRNAs 
bind to complementary sequences in the 3' untranslated regions 
(UTRs) of their target mRNAs and induce mRNA degradation 
or translational repression [13]. miRNAs play important roles in 
several cellular processes, such as proliferation, differentiation, 
apoptosis, and development, by simultaneously controlling the 
expression levels of hundreds of genes [14,15]. In recent years, a 
number of studies have provided evidence that dysregulation of 
miRNA expression contributes to the initiation and progression
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of human cancers. Tumor suppressor miRNAs usually repress growth-
promoting genes and are downregulated in cancers. Conversely, 
oncogenic miRNAs target cell growth-inhibiting genes, and their 
expression is often upregulated in cancers [16]. However, the precise 
contribution of miRNAs to human metastasis and the mechanism 
underlying their dysregulation remain largely unexplored. Recently, 
many disease-associated miRNAs, such as miR-9, miR-25, miR-34b, 
miR-124a, miR-127, miR-129, miR-137, miR-193a, miR-203a, and 
miR-342, were reported to be silenced by aberrant DNA methylation 
of their promoter regions in cancer cells [17-23].

To explore the role of epigenetic mechanisms in the downregulation 
of miRNA-137, we examined DNA methylation-associated silencing 
of miRNAs in GC and observed that aberrant methylation of these 
miRNAs is associated with expression of their target gene products.

Material and Methods
Patients and samples

Gastric adenocarcinoma specimens were obtained from 100 
patients who had undergone surgical resection at Chonnam National 
University Medical School in 2005. These cases were identified 
retrospectively from the surgical pathology files at the hospital.
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The panel of tumor specimens consisted of 50 early GCs and 50 
advanced GCs. Early GC can be defined as a carcinoma limited to 
the mucosa or both the mucosa and submucosa, regardless of nodal 
status. A control group of 40 patients with GC corresponding non-
tumor tissues and 20 patients with benign gastric pathology was 
also evaluated. To exclude the possibility of a cancer field defect, 
normal gastric mucosa tissues from a separate group of patients with 
benign gastric pathology were selected. Clinicopathologic data were 
available for the 100 GC patients. The average age of the patients 
was 60.9 years (range: 30-85 years), and there were 61 males and 39 
females. The mean tumor horizontal diameter was 4.1 cm. Tumors 
were divided into two histological subgroups: the low-grade group, 
consisting of papillary and tubular adenocarcinomas that were well 
or moderately differentiated, and the high-grade group, consisting of 
poorly differentiated adenocarcinomas, signet ring carcinomas, and 
mucinous adenocarcinomas. Of the 100 tumors, 49 were high-grade, 
and 70 were intestinal type according to the Lauren classification. 
Tumor extent was in accordance with the criteria of the American 
Joint Committee on Cancer staging system [24]. Tumor metastasis to 
the lymph nodes and distant metastasis to other organs were observed 
in 46 and 15 of the 100 cases, respectively.

Microdissection and DNA extraction

Resected specimens were measured routinely, examined grossly, 
dissected from the representative tumor and non-tumor areas, 
fixed in 10% neutrally buffered formalin, embedded in paraffin, 
processed routinely, and stained with hematoxylin and eosin. 
Tissues were carefully dissected from carcinomas on H&E-stained 
slides as described previously [25]. Genomic DNA was extracted 
from microdissected tissue using a standard protocol. In brief, 
microdissected tissue was treated with 50 μl buffer containing 0.5% 
Tween 20 (Boehringer Mannheim, Germany), 20 μg proteinase K 
(Boehringer Mannheim, Germany), 50 mmol/L Trizma base at pH 
8.9, and 2 mmol/L ethylene diaminetetraacetic acid and incubated 
at 56°C for 12-18 h. Proteinase K was inactivated by incubating the 
samples at 100°C for 10 min.

Bisulfite treatment of DNA and methylation-specific polymerase 
chain reaction

The methylation status of the has-miR-137 gene promoter was 
determined by bisulfite treatment of DNA followed by methylation-
specific polymerase chain reaction (MSP), as described, with 
modification [26]. The primer sequences for all miRNA genes for 
the methylated and unmethylated reactions and the annealing 
temperature are described in Table 1. The bisulfate treatment was 
performed as follows. Briefly, 2 μg microdissected genomic DNA

were denatured with 2 mol/L NaOH at 37°C for 10 min, followed 
by incubation with 3 mol/L sodium bisulfite (pH 5.0) at 50°C for 
16 h in the dark. After treatment, DNA was purified using the DNA 
cleanup kit (Promega, Madison, WI, USA) as recommended by the 
manufacturer, incubated with 3 mol/L NaOH at room temperature 
for 5 min, precipitated with 10 mol/L ammonium acetate and 100% 
ethanol, washed with 70% ethanol, and finally resuspended in 30 μl 
distilled water. The methylation status of three gene promoters was 
determined using 2 μl bisulfite-treated DNA as a template for PCR 
using primers specific for the methylated and unmethylated alleles. 
Amplification was carried out in the GeneAmp PCR System 9700 
thermocycler (Perkin Elmer, USA) for 40 cycles (30 s at 95°C, or 
60 s at annealing temperature, then 60 s at 72°C, followed by a final 
4-min extension at 72°C). The amplified PCR product (20 μl) was 
electrophoresed on 2% acrylamide gels and visualized by ethidium 
bromide staining. DNA from the RKO colon cancer cell line 
(American Type Culture Collection, Manassas, VA, USA) was used 
as a positive control for methylated DNA. A sample was considered 
positive for methylation if a band was seen for the DNA amplified by 
the methylated reaction primers.

Bisulfite treatment of DNA and methylation-specific polymerase 
chain reaction

Immunohistochemical staining for the potential target gene 
products of miRNAs was performed on paraffin-embedded tissue 
sections. Tissue sections (4 μm) of formalin-fixed, paraffin-embedded 
blocks were deparaffinized, rehydrated, rinsed with distilled 
water, and washed with Tris-buffered saline. Antigen retrieval was 
performed using a heat-induced epitope retrieval method. Avidin-
biotin peroxidase complex staining with diaminobenzidine (Sigma) 
as the chromogen was performed using the streptavidin-horseradish 
peroxidase detection system (Ventana; Biotek Solutions, Tucson, AZ, 
USA). The primary antibody used for the immunohistochemical 
analysis was anti-cdc42 (1:200, Novus Biologicals, Littleton, CO, 
USA). The specificity of this antibody was confirmed previously by 
the manufacturer. Immunohistochemical staining was performed 
twice for samples with disagreement. A high level of concordance 
was achieved after this procedure. For a qualitative description of the 
relative intensity of immunoreactivity, the staining intensity was scored 
as follows: 0, no staining; 1, weak staining, scarcely above background 
level; 2, moderate staining; 3, strong staining. Immunoreactivity was 
considered abnormal if the intensity score was 0 or 1 and normal if the 
score was 2 or 3. Staining of tumor cytoplasm was evaluated on coded 
slides without knowledge of the molecular analysis results.

Statistical Analysis
All statistical analyses were conducted using SPSS for Windows
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Gene Type of primer Primer SEQ. Size (bp) AT (°C)

hsa-miR-137     -M Sense 5´-TTAGTTTATTTTTAGGTAGGGGCG-3´ 124 60

Antisense 5´-AAACCAAACTACCGCTACCG-3´

hsa-miR-137      -U Sense 5´-AGTTTAGTTTATTTTTAGGTAGGGGTG-3´ 128

Antisense 5´-AAAAACCAAACTACCACTACCACT-3´

hsa-miR-137      -M Sense 5´-GTAGGGGGGTAGCGGTC-3´ 157 60

Antisense 5´-CAATCCTAATCACCAAAAACGCAACG-3

hsa-miR-137     -U Sense 5´-TGGTAGGGGGGTAGTGGTTG-3´ 166

Antisense 5´-CATTTTCCAATCCTAATCACCAAAAACACAACA-3´

Table 1: Primer sequence used in methylation-specific polymerase chain reaction.
AT; annealing temperature

 1

 

 

1

 2

3

http://dx.doi.org/10.15344/2393-8498/2014/102
http://dx.doi.org/10.15344/2393-8498/2016/120


Int J Gastroenterol Disord Ther                                                                                                                                                                  IJGDT, an open access journal                                                                                                                                          
ISSN: 2393-8498                                                                                                                                                                                            Volume 3. 2016. 120                           

(version 15.0; SPSS, Chicago, IL, USA). The methylation status 
of miRNA genes with respect to the progression of GC and the 
associations of miRNA gene methylation status with clinicopathologic 
variables were analyzed by Pearson’s χ2 test or two-tailed Fisher 
exact probability test, where appropriate. Agreement between the 
methylation status and immunohistochemical expression was 
estimated by calculating the kappa value. Comparison of Kaplan-
Meier product limit survival curves was performed by application of 
the log-rank test. All reported p values were two-sided, and the level 
of significance was set at p<0.05.

Results

Frequency of miRNA-137 gene promoter methylation in gastric 
carcinoma and normal gastric tissues by MSP

Our analysis showed that the miRNA-137 gene and its 5’-UTR 
are located within CpG islands (Figure 1). Thus, we speculated 
that methylation of CpG islands leads to silencing of miRNA gene 
expression. To evaluate miRNA-137 gene promoter methylation in 
primary GC, 100 tumor samples were analyzed by MSP. Forty patients 
with corresponding non-tumor tissues and 20 patients with benign 
gastric pathology were evaluated as a control group.

Representative results are shown in Figures 2-3. The degree of 
methylation of the has-miR-137 CpG island was 86% in tumor 
tissues, 78% in non-tumor tissues, and 55% in normal gastric 
tissues (Table 2). Methylation of the has-miR-137 CpG Island was 
frequently observed in tumor and non-tumor tissues of GC patients, 
but not in normal gastric tissues. However, there were no significant 
correlations between aberrant methylation of miRNA-137 and other 
clinicopathological factors.
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has-miR-137

Group Total M U

Normal 20 11 (55%) 9 (45%)

Margins 40 31 (77.5%) 9 (22.5%)

EGC 50 43 (86%) 7 (14%)

AGC 50 43 (86%) 7 (14%)

P value 0.27
Table 2: Proportion of cases with methylation status in normal mucosa, 
margins, and gastric carcinoma by methylation-specific polymerase 
chain reaction. EGC; early gastric carcinoma, AGC advanced gastric carcinoma
U; unmethylated, M; methylated

Figure 1: Schematic of the miRNA-137 sequence on chromosome 1q22, derived from the UCSC genome browser (http://genome.ucsc.
edu). The regions of CpG dinucleotides in exon1 selected for methylation-specific polymerase chain reaction analysis are indicated below 
the CpG map. TSS: transcription start site.

Figure 2: Methylation-specific polymerase chain reaction analysis of has-
miR-137 gene methylation in normal mucosa, tumor margin, and gastric 
carcinoma tissues. Methylation frequency was significantly increased in 
gastric carcinoma.

Figure 3: Comparative examples of methylation analysis of the has-miR-137 gene. Three sets of panels consisting of representative methylation-
specific polymerase chain reaction electrophoretic products. Lane U, unmethylated; lane M, methylated; lane numbers, patient sample number.
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Correlation between immunohistochemical expression of miRNA 
target genes and promoter methylation by MSP

As a target gene of has-miR-137, we focused on cdc42. The results of 
immunohistochemical analysis showed that expression of Cdc42 was 
preserved in normal gastric tissues and non-tumor tissues, whereas 
expression was lost in tumor tissues. These data suggest that DNA 
methylation-associated silencing of has-miR-137 prevents down 
regulation of the corresponding miRNA targets, such as oncoprotein 
Cdc42, and stimulates the progression and dissemination of the 
tumor.

Association between miRNA-137 gene promoter methylation and 
clinicopathological variables

The relationships between promoter methylation and 
clinicopathological variables of patients with GC are shown in Table 
3. miRNA-137 promoter methylation by MSP was not associated with 
age, sex, histological type, Lauren classification, depth of invasion, 
or metastasis (p>0.05). However, the miRNA methylation status was 
closely associated with tumor size (p=0.03). Survival analysis was 
performed by log-rank analysis of Kaplan-Meier survival curves. In 
this study, the median follow-up after surgery was 63 months (range 
49-68 months). However, the difference between the miRNA-137 
methylated and unmethylated groups was not statistically significant.

Discussion

miRNAs are 19- to 25-nucleotide-long RNAs that bind 
complementary sequences in the 3’UTR of several target mRNAs to 
induce their degradation or repress their translation. They play a crucial 
role in the initiation and progression of human cancers [12,14,15]. 
Epigenetic inactivation of miRNAs in human cancer constitutes an 
emerging mechanism involved in the progression of cancer. Studies 
have reported that miR-137 down regulation is common in various 
cancers, such as pancreatic, hepatocellular, and head and neck 
cancers. Epigenetic silencing of miR-137 is an early event in colorectal 
carcinogenesis [19]. Expression of miR-137 is restricted to the 
colonocytes in normal mucosa and inversely correlated with the level 
of methylation. Promoter methylation of miR-137 was associated 
with female gender and inversely associated with body mass index in 
squamous cell carcinoma of the head and neck (SCCHN). Promoter 
methylation of miR-137 appears to be a relatively frequently detected 
event in the oral rinse of SCCHN patients and may have future utility 
as a biomarker in DNA methylation panels [10].

In this study, we confirmed that miR-137 was more frequently 
downregulated in GC tissues than in the corresponding non-cancerous 
tissues. We also evaluated whether downregulation of miR-137 is 
mediated by epigenetic mechanisms in GC. We found that the miR-
137 promoter was methylated in 21 of 30 (70%) cancer tissues and 2 of 
30 (6.7%) adjacent non-cancerous tissues. The expression of miR-137 
was further determined in a panel of five human GC cell lines (AGS, 
SGC-7901, MKN28, MKN45, and BCG823). We examined a further 
link between miR-137 CpG island hypermethylation and its gene 
silencing by the treatment of these cancer cell lines with decitabine 
(DAC). After treatment with DAC, the expression of miR-137 was 
restored. From a functional standpoint, we next examined whether 
epigenetic inactivation of miR-137 inhibits growth suppression in 
GC cells. By restoring miR-137 expression in GC cells, we indeed 
showed that miR-137 suppressed cell growth, induced apoptosis, and 
inhibited the cell cycle in GC cells, suggesting a tumor-suppressive 
role of miR-137.

Three independent studies screening for important oncogenes have 
found that Cdc42 is commonly altered by retroviral insertions. Cdc42 
was over expressed in colorectal cancer samples, and this expression 
was associated with silencing of ID4 with statistical significance 
[13,19]. The up-regulated Cdc42 activity may impair c-Cbl-mediated 
EGFR degradation, contribute to EGFR hyperactivity, and induce 
proteasomal degradation of p21CIP1, leading to an increase in 
cell proliferation and migration. These functional outcomes may 
occur through regulation of the PAK1, GSK3b, MLC, ERK1/2, 
and JNK pathways. In addition, down regulation of Cdc42 signals 
can inhibit anchorage-independent growth and induce apoptosis 
via the PI (3)K-Akt and Erk signaling cascades and the p53 tumor 
suppressor [16,17]. Cdc42 was found to be a direct target of miR-
137 in colorectal cancer cells, and ectopic expression of miR-137 
reduced Cdc42 expression [8]. Similarly, we found that exogenous 
miR-137 suppressed the expression of Cdc42, resulting in decreased 
phosphorylation of ERK1/2. Similar results were also obtained after 
transfection of siRNAs targeting Cdc42. Cdc42 was shown to be a 
direct target of miR-137 by a luciferase reporter assay. Additionally, 
we found that inactivation of Cdc42 by siRNA and the exogenous 
expression of miR-137 induced apoptosis in AGS cells. Apoptosis 
in GC cells induced by siRNAs targeting Cdc42 was similar to the 
results obtained from ectopic expression of miR-137. It was suggested 
that inactivation of the Cdc42/ERK pathway is involved in miR-137-
induced apoptosis in GC.
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has-miR-137 

Total M U p value

Age (year) <40 1 0 1 NS

41-50 15 11 4

51-60 17 15 2

61-70 37 31 6

70< 30 30 0

Sex Male 61 51 10 NS

Female 39 36 3

Tumor size ≤4cm 67 56 11 <0.05

>4cm 33 30 3

Histologic 
type

Low grade 51 45 6 NS

High grade 49 40 9

Lauren 
classification

Intestinal 70 62 8 NS

Mixed 14 13 1

Diffuse 16 12 4

Depth of 
invasion

T1 51 44 7 NS

T2 19 17 2

T3 27 23 4

T4 3 3 0

LN metastasis Absent 54 46 8 NS

Present 46 41 5

Distant 
metastasis

Absent 85 74 11 NS

Present 15 13 2
Table 3: Clinicopathological features of gastric carcinoma patients by 
promoter methylation status of miRNA-137 gene.
U; unmethylated, M; methylated, NS; not significant
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Conclusion
These results suggest that specific miRNA methylation in GC 

could be an important molecular mechanism causing loss of target 
regulation. It may be correlated with early-stage gastric carcinogenesis 
and could be used as an efficient diagnostic biomarker.
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