
Mapping Surficial Materials in South of Wager Bay Area (Nunavut) Using 
RADARSAT-2 C-HH and C-HV, Landsat-8 OLI, DEM and Slope Data

Publication History:

Received: December 23, 2018
Accepted: March 27, 2019
Published: March 29, 2019

Keywords:

Landsat-8OLI, surficial material 
mapping, Arctic, RADARSAT-2, 
dual-polarized, Random Forests

Research Article Open Access

*Corresponding Author: Dr. Brigitte Leblon, Faculty of Forestry and 
Environmental Management, University of New Brunswick, Fredericton, Canada; 
E-mail: bleblon@unb.ca

Citation: Byatt J, La Rocque A, Leblon B, Harris J, McMartin I, et al. (2019) Mapping 
Surficial Materials in South of Wager Bay Area (Nunavut) Using RADARSAT-2 
C-HH and C-HV, Landsat-8 OLI, DEM and Slope Data. Int J Earth Environ Sci 4: 
164. doi:  https://doi.org/10.15344/2456-351X/2019/164

Copyright: © 2019 Byatt et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

International Journal of
Earth & Environmental Sciences

Justin Byatt1, Armand La Rocque1, Brigitte Leblon1*, Jeff Harris2 and Isabelle McMartin3

1Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, Canada
2Private Consultant  6 Sixth St., Fenelon Falls, Ontario, Canada
3Geological Survey of Canada, Ottawa, Ontario, Canada

Int J Earth Environ Sci                                                                                                                                                                                             IJEES, an open access journal                                                                                                                                          
ISSN: 2456-351X                                                                                                                                                                                                       Volume 4. 2019. 164

                                 Byatt et al., Int J Earth Environ Sci 2019, 4: 164
                                 https://doi.org/10.15344/2456-351X/2019/164

(GEM-1 and GEM-2) programs to provide new geological knowledge 
on the nature and composition of surficial materials for sustainable 
resource development and land-use management in central mainland 
Nunavut [13-16]. The study is subdivided into two parts: part 1 
[8] produced a surficial materials map with 21 classes for an area 
located north of Wager Bay by applying a non-parametric supervised 
classifier (Random Forests) to a combination of Landsat 8 optical 
images and RADARSAT-2 SAR C-HH and C-HV images as well as a 
digital elevation model (DEM) and derived slope data; part 2 applies 
the same methodology developed and validated in the area north of 
Wager bay to produce a surficial materials map comprising 22 classes 
for an area located south of Wager Bay, Nunavut. The resultant map is 
validated with an independent set of georeferenced field observations 
that were acquired in summers of 2012, 2015, and 2016.

Study Area

The study area is located south of Wager Bay, Nunavut, on the 
western side of Hudson Bay and includes parts of Ukkusiksalik 
National Park (Figure 1). It covers the National Topographic System 
(NTS) map sheets 046D, 046E, 055P, 056A, 056H. The study area 
is located within the Wager Plateau of the Canadian Shield [17].
Elevations range from sea level along Wager Bay and Hudson Bay to 
550 m asl in the northwestern part of the study area. The drainage 
network lianks numerous intermediate to large lakes and ponds 
(Figure 1). The overall discharge direction of drainage systems is from 
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accuracy was thin sand and gravel over bedrock (11.1%), commonly confused with sand and gravel with 
vegetation and bedrock. Adding RADARSAT-2 data in the classification increases also the mapping 
accuracy that was established by comparing to georeferenced point observations. 

Introduction

Surficial geological mapping is traditionally based on the 
interpretation of aerial photographs using a stereoscope and then 
ground-truthed byfield work. However in Arctic regions, field 
surveys are time-consuming and costly because of the remote access 
and the lack of infrastructure for logistical support of field programs. 
To address these limitations and assist in the interpretation of the 
surficial geology, an improved method for mapping surficial materials 
is the use of satellite imagery in concert with digital image processing 
techniques. This approach offers the advantages of extensive regional 
coverage, no aerial or ground disturbance of the areas to be mapped, 
as well as complete and cost-effective data coverage. Optical images 
such as Landsat or SPOT can be used [1], but optical images cannot 
be acquired at night or during cloudy conditions. These limitations do 
not exist with synthetic aperture radar (SAR) images, such as those 
acquired by RADARSAT-2 [2,3], because SAR is an active sensor that 
generates its own microwave energy and therefore image acquisition 
is independent of atmospheric conditions. However, image quality 
can be affected by ground moisture related to weather and climate.

Previous research of using Synthetic Apeture Radar (SAR) 
imagery for mapping surficial materials of northern Canada was 
limited largely to single frequency and single polarization sensors on 
board of RADARSAT-1 [4-6]. More recent studies have employed 
the advantages of multi-polarized SAR images, particularly the 
combination of like- and cross- polarized data [3,7,8]. Cross-
polarized images can measure depolarization over areas of vegetation 
[9] and extreme surface roughness [10]. Combining SAR and optical 
imagery offers several advantages because both image types are 
complementary [5-7,3,8]. SAR images are sensitive to surface texture 
by providing information on scattering mechanisms that are related 
to surface roughness and moisture content [11,3]. Optical images are 
sensitive to surficial reflective properties that are generally governed 
by surface chemistry, vegetation, and surface moisture content [12].

This research is part of a surficial geology mapping effort under 
Natural Resources Canada’s Geo-mapping for Energy and Minerals 
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west to east through Roes Welcome Sound into the Hudson Bay, 
or south to north for the uplands that slope abruptly into Wager 
Bay (Figure 1). The climatic conditions in the study area are of an 
arctic climate. The vegetation is typical of the Arctic tundra and is 
mainly composed of dwarf shrubs, birch, willow mixed with herbs, 
lichens, and mosses [18]. Soils in the lowland areas are thin organic 
soils (peat), whereas other soils are cryosols associated with deep 
permafrost (frozen soil) and related periglacial landforms [18]. 
However, the active layer thaws during the summer months, and 
creates standing water and/or saturated soils, which may interfere 
with radar backscatter [3].

The geomorphology of the region is characterized by streamlined 
terrain which extends southeast from a former major ice divide zone 
(Keewatin Ice Divide), from which ice flowed radially during the last 
glaciation [13]. The Keewatin Ice Divide was centred in the uplands 
southwest of Wager Bay and its eastern extremity extended in the 
study area over NTS 56H and 46E map sheets, forming a landscape 
now dominated at surface by till of varying thickness, felsenmeer, and 
weathered bedrock [13,15,16,19]. This glacial landscape is interspersed 
by a complex system of subglacial meltwater corridors and proglacial 
meltwater channels. The subglacial corridors comprise large eskers, 
small irregular hummocks, and ridges of sandy diamicton, short 
streamlined landforms of till, boulder lags, washed bedrock surfaces, 
and outwash plains. In former proglacial meltwater systems, till 
surfaces show extensive erosion and/or reworking. The limit of 
postglacial marine submergence ranges from 113m above mean sea 
level (AMSL) south of Wager Bay to about 152m AMSL west of Roes 
Welcome Sound [19]. Lowlands that skirt the coasts of Roes Welcome 
Sound show evidence of postglacial marine erosion and reworking 
of thin glacial and glaciofluvial sediments [15,16]. Glaciomarine 
veneers are sandy and occur as scattered deposits between rock ridges 

or glacial landforms. Preliminary surficial geology maps compiled 
at the 1:100,000 scale as part of the GEM program in NTS 46D 
and 56A prior to field work [20-22] are based largely on air-photo 
interpretation with minimal ground-truthing. In NTS 56H-south, 
Randour and McMartin [23] more recently compiled a surficial 
geology map based on detailed field observations. Frost-riven, rough 
and lichen-covered outcrops occur sporadically across the area, and 
are mainly concentrated in meltwater corridors, in coastal lowlands 
along Rose Welcome sound or in the uplands south of Wager Bay; 
glacially polished bedrock outcrops are rare and more common along 
the coast in the intertidal zone.

Data Sources

Five Landsat-8 images were acquired by the Operational Land 
Imager (OLI) sensor over two years from 2013 to 2014 (Table 1). 
These images were mosaicked together to cover the entire study area. 
They were visually checked to ensure that the ground was free of ice 
and snow and did not include any clouds or shadows. The Landsat 8 
images were already georeferenced in a NAD83 format (UTM Zone 
16, Row W) and have eight bands: B1 (0.43-0.45 µm), B2 (0.45-0.51 
µm), B3 (0.53-0.59 µm), B4 (0.64-0.67 µm), B5 (0.85-0.88 µm), B6 
(1.57-1.65 µm), B7 (2.11-2.29 µm), and B8 (0.50-0.68 µm).

Eight RADARSAT-2 Scan SAR Wide-A C-band dual-polarized 
(HH and HV) images acquired during August of 2014 were used for 
this study (Table 2),with an incidence angle increasing from 20 and 
49.3° from the center to the image corner. Four SAR images were 
acquired with an ascending orbit resulting in an east-looking direction 
and four with a descending orbit resulting in a west-looking direction 
(Table 2). While the ascending orbit images were acquired during dry 
conditions, the descending orbit images were acquired during dry 

Figure 1: Location and elevation above the mean sea level (AMSL) of the study area, located south of Wager Bay, Nunavut.
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and wet conditions, as Byatt [24] showed that the accuracy of surficial 
material maps increases when optical and SAR images acquired over 
dry and wet conditions are combined. Each image file had two images: 
the HH polarized image and the HV polarized intensity image. All the 
images were checked visually to ensure the ground was free of snow 
and ice cover.

Ancillary data used in this study included several 1:50,000 digital 
elevation model (DEM) tiles [25], that were downloaded from 
GeoGratis database [25]. The DEM has a resolution of 16.1 m in the x 
direction, 23.3 m in the y direction and 1 m in the z direction. Ground 
elevations are recorded in meters relative to mean sea level (MSL), 
based on the NAD83 horizontal reference datum. The DEM tiles 

Image ID Date Time UTC Cloud cover (%) Sun elevation (°) Sun azimuth (°) Precipitation (mm)(*)

LC80310142013207LGN00 2013/07/26 17h19 0.71 43.40 167.48 0.42

LC80310142013223LGN00 2013/08/11 17h19 2.35 39.23 168.42 0.20

LC80330132013221LGN00 2013/08/09 17h32 1.28 41.04 166.57 0.62

LC80330142013221LGN00 2013/08/09 17h31 0.01 39.81 166.26 0.62

LC80340132014247LGN00 2014/09/04 17h35 0.04 30.03 172.08 16.42
Table 1: Characteristics of the Landsat-8 OLI images used for this study.
(*): Total of rain equivalent (in mm) during the three days prior to image acquisition, estimated by the first author from the mean precipitation 
recorded at Baker Lake (64°19'05"N096°01'03"W), Rankin Inlet (62°48'35"N 092°05'58"W), Kugaaruk (68° 32' 0"N, 89° 49' 0"W), Gjoa Haven 
(68°37'33"N 095°52'30"W), and Hall Beach (68°46'38"N 081°13'27"W).

Orbit Mosaic ID Date Local time Precipitation (mm)(*) Image ID

Ascending (Northeast 
looking direction)

A2 15/08/2014 18h21 2.04 RS2_20140815_SCWA_A1

RS2_20140815_SCWA_A2

A4 25/08/2014 18h30 0.22 RS2_20140825_SCWA_A1

RS2_20140825_SCWA_A2

Descending (Northwest 
looking direction)

D2 14/08/2014 12h19 6.06 RS2_20140814_SCWA_D1

RS2_20140814_SCWA_D2

D4 24/08/2014 12h27 0.18 RS2_20140824_SCWA_D1

RS2_20140824_SCWA_D2
Table 2: Characteristics of the RADARSAT-2 dual polarized (C-HH and C-HV) images used for this study.
(*): Total of rain equivalent (in mm) during the three days prior to image acquisition, estimated by the first author from the mean precipitation 
recorded at Baker Lake (64°19'05"N;96°01'03"W), Rankin Inlet (62°48'35"N; 92°05'58"W), Kugaaruk (68° 32' 0"N; 89° 49' 0"W), Gjoa Haven 
(68°37'33"N; 95°52'30"W), and Hall Beach (68°46'38"N; 81°13'27"W).

Figure 2: Location of:a)training area constituted of 610 field observation GPS and airphoto-interpreted GPS polygons and and b) validation 
sites, constituted of 648 field observation GPS and airphoto-interpreted sites
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were used for terrain correction when georeferencing the SAR images 
and for correcting the topographic effects in the Landsat mosaicking 
process. The DEM was also used to compute the slope. Both the DEM 
and slope were used as input features in the classifier.

Two types of georeferenced sites were used in the study. The first one 
consists offield observations collected at 45 sites during the summer 
of 2015 as part of a GEM-2 funded project [26,15]. They consist of 
ground pictures, Ground Position Satellite (GPS) coordinates, and 
detailed descriptions of the surficial materials. The second type of GPS 
sites were determined from photo-interpretation of helicopter-based 
pictures collected in 2015 and of Google Earth images [27]. About 648 
GPS sites were used to validate the produced map. Another510sites 
were used to delineate training polygons of at least 10 pixels for a 
total of 2216 points. Both the training and validation GPS sites were 
distributed across the study area (Figure 2). Details on the distribution 
of the training and validation GPS sites within the surficial material 
classes are presented in the Image classification section.

Methods

Image processing

The flowchart shown in Figure 3 provides a summary of the image 
processing methodology used in the study. The majority of the image 
processing was performed in PCI Geomatica 2015® software. The 

DEM tiles were first imported and then mosaicked together using the 
Ortho Engine module of PCI Geomatica 2015 ®. The resulting mosaic 
was also used to compute a slope mosaic. The digital numbers of the 
Landsat 8 OLI images were first converted into top of atmosphere 
(TOA) reflectance values, following the method described in the 
Landsat 8 users handbook [28]. This conversion also removes some of 
the atmospheric interferences.

Following methods utilized by Grunsky et al. [5] and LaRocque 
et al. [3], the RADARSAT-2 C-HH and C-HV images were filtered 
to help suppress the effects of speckle using a Gaussian filter (with 
a standard deviation of 1.6). Speckle is a multiplicative noise and its 
intensity must be attenuated in order to enhance fine details on SAR 
images [29]. Each individual image was then orthorectified with the 
“RADARSAT-2 Rational Function Model” function provided by the 
Orthoengine module of PCI Geomatica 2015®, using the DEM and 
ground control points (GCPs). Approximately 20 GCPs were extracted 
from the orthorectified Landsat 8 data for georeferencing, achieved 
with a mean accuracy of less than one pixel in both x and y axes (Table 
3). The georeferenced images were then mosaicked together to cover 
the entire study area. This was accomplished using the OrthoEngine 
module of PCI Geomatica 2015®, using the "Automatic Mosaicking" 
menu that requires the use of the DEM. The parameters used in the 
mosaicking method were as follows: histogram for the full image, 
adaptive filter: 20 % of the image, match area: 10 %, cutline: minimum 
difference, and blend width: 20 pixels.

Image ID Number of ground control points (GCP) RMS error
X Y Mean

RS2_20140815_SCWA_A1 18 0.77 0.54 0.55
RS2_20140815_SCWA_A2 15 0.84 0.6 0.59
RS2_20140825_SCWA_A1 24 1.09 0.76 0.78
RS2_20140825_SCWA_A2 12 0.78 0.59 0.52
RS2_20140814_SCWA_D1 13 0.82 0.58 0.58
RS2_20140814_SCWA_D2 20 0.70 0.49 0.50
RS2_20140824_SCWA_D1 20 0.75 0.44 0.60
RS2_20140824_SCWA_D2 20 0.50 0.58 0.77

Table 3: Orthorectification accuracy (in pixel) for the RADARSAT-2 images used in this study.

Figure 3: Flowchart showing the methodology of the study.
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Image classification

The same surficial material classes were used as was utilized for the 
Wager Bay North area [8], with some exceptions (Table 4). A specific 
surface materials class used in the Wager Bay North study, carbonate-
rich till (cT), was not used in the southern region because it is not 
present south of Wager Bay [15]. Two additional surficial materials 
classes, thin sand and gravel over bedrock (S/T), and wave-washed 
till (wT) were added as they were identified in the field within the 
southern region.

Representative training areas of each the material classes were 
delineated from photo-interpretation of the orthorectified Landsat 
8 and RADARSAT-2 imagery in a similar way as Grunsky et al. [5], 
Harris et al. [11], Shelat et al. [7], LaRocque et al. [3], and Byatt et 
al. [8]. Training polygons have at least 10 pixels per site for adequate 
class representation in the classification (Table 5). The training areas 
were then used to compute class spectral signatures. Landsat-8 OLI 
data measure the reflective optical properties of the surficial materials 
in the visible, near-infrared, and shortwave-infrared wavelengths of 
the electromagnetic spectrum. These reflective properties are highly 
related to the presence or absence of vegetation that has a strong 
reflectance in green (B3) and near-infrared (B5) bands. They are also 
related to moisture content of surficial materials. The RADARSAT-2 
images are related to the backscatter properties in each polarization 
(HH, HV) of the surficial materials, which depend on surface 
roughness, morphology (geometry), and moisture content.

The accuracy of image classification greatly depends on the spectral 
separability between classes. In this study, the spectral separability 
was assessed by the Jeffries-Matusita (J-M) distance, which has values 
ranging from 0 to 2. A value between 0 and 1 indicates a very poor 
separation, 1 and 1.9 suggests a moderate separation, and 1.9 and 2.0 
reflects a good separation [30].

The classifier used in this study is a non-parametric decision-tree-
type classifier, Random Forests (RF), which does not require normal 
distribution of the input data [31,32]. The algorithm used for this 
study was developed in the R programming language [33], which had 
recently been successfully employed in a study on surficial material 
mapping in the Hudson Bay Lowland [34]. There are two versions of 
RF, known as “all-polygon” and “sub-polygon”. The all-polygon version 
uses all of the pixels within all of the training area polygons to define 
class training areas, whereas the sub-polygon version randomly selects 
a user-determined number of training area pixels from each class. This 
study only uses the all-polygon version as ithas the advantage of taking 
into account the actual class size and because it was already shown to 
produce better results in the study of the Wager Bay North area [8]. 
The settings of the classifier were the same as for the north Wager 
Bay study, namely a forest of 500 independent decision trees with the 
default values for the mtry variable, without bootstrapping. The RF 
classifier uses two-thirds of the input training-area data, referred to 
as in-bag data, for calibration. The remaining third of the data is then 
referred to as out-of-bag (OOB) data and is used to test or validate 
the resulting classification; these data produce the OOB error matrix.

Code Name Description

Ap Alluvial plain Alluvial sand and silt; exposed; very often water-saturated; found along a river or a stream. 

Af Flooded alluvium Alluvial sand and silt; exposed; periodically water-covered; found in the bottom of a valley. 

At Alluvial terrace Alluvial sand and silt; exposed or with short vegetation cover; mostly dry; forming a terrace. 

O Organic Organic material; short vegetation-covered; poorly drained soil. 

Mc Offshore silt and clay Very fine material (essentially silt and clay). 

McV Offshore silt and clay with vegetation Very fine material (essentially silt and clay); short vegetation-covered. 

Ms Marine sand Mostly sand; exposed; thick (> 30 cm). 

MsV Marine sand with vegetation Mostly sand; short, dense vegetation-covered; thick (> 30 cm)

Ms/R Thin marine sand Mostly sand; exposed; bedrock may appear but cover less than 50% of the surface. 

SG Sand & Gravel Sand and gravel; exposed; very dry. 

SGV Sand & Gravel with vegetation cover Sand and gravel; short vegetation-covered; very dry. 

S/R Thin sand and gravel over bedrock Sand and gravel veneer, bedrock outcrops may appear but cover less than 50% of the surface.

T Thick till Sand and silt diamicton; a few boulders; sparse, short vegetation-covered; commonly thick (> 30 cm). 

bT Bouldery till Silt and sand diamicton; many boulders; short vegetation-covered. 

gT Gravelly till Gravelly diamicton; exposed or short vegetation-covered. 

gsT Gravelly sandy till Sand and gravel diamicton; exposed or short vegetation-covered.

sT Sandy till Sandy diamicton; exposed or short vegetation-covered; thick (> 30 cm); mostly dry; hummocky 
topography. 

wT Wave-washed till Wave-washed sandy till; often covered with a thin layer (< 30 cm) of littoral sediments. 

TV Thick till with dense vegetation cover Sand and silt diamicton; dense, short vegetation-covered; thick (> 30 cm). 

T/R Thin till Sand and silt diamicton; may have some boulders; thin (< 30 cm); bedrock cover less than 50% of 
the surface.  

B Boulders Mostly boulders; cover more than 50% of the surface; some discontinuous till and bedrock. 

R Bedrock Undifferentiated bedrock; cover more than 50% of the surface. 
Table 4: Description of the surficial material classes used in the surficial material mapping, south of Wager Bay.
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For both the J-M distance computation and the classifier, two image 
combinations were considered: 1) only the Landsat-8 OLI optical 
images; and 2) a combination of Landsat-8 OLI and RADARSAT-2 
images. In both cases, DEM and derived slope data were included 
in the classification to take into account topographic (elevation) 
information of each class. Also, the classifier was applied to the images 
where background, lakes, rivers, and other water bodies were masked 
out with a mask that was created from a combination of the band 8 
(cirrus) of Landsat 8 OLI and RADARSAT-2 C-HV images.

Accuracy assessment

Classification accuracy was assessed first by comparing training 
areas with the equivalent classified land use in the imagery. The 
comparison was performed under the form of a “confusion matrix” or 
error matrix”, where each cell expresses the number of pixels classified 
to a particular class in relation to the class defined by the training areas 
[35]. This confusion matrix corresponds to the “out of bag” (OOB) 
error matrix produced by RF. It allows computing individual user’s 
and producer’s class accuracies and their related errors (omission 
and commission), as described in Congalton [35]. The user’s class 
accuracy corresponds to the probability that a pixel of the classified 
image is in the correct class, the associated number of misclassified 
pixels being pixels classified in the incorrect class (error of omission). 
The producer’s class accuracy measures the probability that a 
reference pixel is effectively well classified, the associated number of 
misclassified pixels being pixels that actually belong to another class 
(error of commission). From the confusion matrix, it is also possible 
to compute the average and overall accuracies. The average accuracy 
was computed as the simple average between user’s class accuracies, 

whereas the overall accuracy (or out-of-bag accuracy) is the average 
of individual class user’s or producer’s accuracies, weighted by the size 
of the class in the classified or reference image.

The aforementioned method gives the classified image accuracy, 
which is different than the true mapping accuracy. Indeed, a more 
robust and independent accuracy assessment is to compare the 
resulting classified image with an independent set of GPS field 
observation data acquired over the validation sites. If the image 
returns the same class as the one observed at the validation sites, 
then the pixel related to this validation site is given a value of 1. If 
it is not the case, then the value is zero. A confusion matrix between 
the ground truth and classified image can then be computed. In this 
study, we used 648 GPS points for validating the resulting map. The 
distribution of the points among the various classes is presented in 
Table 5.

Results and Discussion

Jeffries-matusita distances

The J-M distances were computed to determine the class separability 
for the Landsat-8 OLIoptical images alone (Table 6) or combined with 
RADARSAT-2 SAR images (Table 7).The Landsat-8 images produced 
high separabilities, with a mean J-M distance of 1.968.There were 16 
class pairs that showed a J-M distance of less than 1.85, indicating 
there is slightly higher separabilities than in the Wager Bay North 
study, which had 21 class pairs showing a J-M distance of less than 
1.85 [8]. The minimum J-M distance was 1.101 and occurred between 
marine sand (Ms) and alluvial terrace (At). This is consistent with 

Code Number of training polygons Number of pixels Area (km2) Percent of image (%) Number of validation GPS sites

Ap 4 40 36.0 0.000221 11

Af 8 80 72.0 0.000442 9

At 6 60 54.0 0.000332 9

O 10 111 99.9 0.000614 20

Mc 5 40 36.0 0.000221 14

McV 12 120 108.0 0.000663 33

Ms 15 140 126.0 0.000774 33

MsV 6 60 54.0 0.000332 15

Ms/R 21 200 180.0 0.001105 63

SG 19 182 163.8 0.001006 35

SGV 14 140 126.0 0.000774 29

S/R 4 40 36.0 0.000221 9

T 9 83 74.7 0.000459 31

bT 12 120 108.0 0.000663 39

gT 4 40 36.0 0.000221 13

gsT 4 40 36.0 0.000221 25

sT 11 100 90.0 0.000553 27

wT 13 120 108.0 0.000663 36

TV 10 100 90.0 0.000553 28

T/R 14 140 126.0 0.000774 63

B 8 80 72.0 0.000442 18

R 19 180 162.0 0.000995 88
Table 5: Characteristics of the training area polygons and number of validation GPS sites per class.
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the findings of the study done in the Wager Bay North region, for 
which the minimum J-M distance was between marine clay (Mc) and 
alluvial terrace (At) [8]. So both study areas show low J-M distances 
between a marine sediment and an alluvial terrace sediment, however 
there is a slight difference in the type of sediment (sand vs. clay).This 
difference is probably due to the fact that the training areas used in this 
study include slightly different types of surficial classes, as mentioned 

above. However, similar to Byatt et al. [8], the minimum J-M distance 
of 1.101is higher than the values of0.75 reported by Shelat et al. [7], 
and 0.50 reported by LaRocque et al. [3]. Each of these studies used 
Landsat-7 ETM+ optical images, which do not have the same spectral 
resolution as the Landsat-8OLI images. This study also includes 
images acquired under both wet and dry surface conditions, which 
have been shown in Byatt [24] to improve the class separability.

Class Ap Af At O Mc McV Ms MsV Ms/R SG SGV S/R T bT gT gsT sT wT TV T/R B
Af 1.990
At 2 2
O 2 2 2
Mc 1.998 2 1.794 2
McV 2 2 2 1.914 2
Ms 2 2 1.101 2 1.647 2
MsV 2 2 2 1.969 2 1.749 2
Ms/R 1.892 2 1.995 2 1.938 2 1.992 2
SG 1.588 1.968 1.943 1.999 1.875 2 1.952 2 1.736
SGV 1.966 2 2 1.994 2 2 2 2 1.747 1.891
S/R 2 2 2 2 2 2 2 2 2 2 1.814
T 2 2 2 1.922 2 2 2 2 2 2 1.999 2
bT 1.995 1.983 1.961 1.952 1.933 2 1.966 1.995 1.985 1.818 1.993 2 1.675
gT 2 2 2 2 2 2 2 2 2 1.999 2 2 2 1.989
gsT 2 2 2 1.996 2 2 2 2 2 2 2 2 1.999 1.994 2
sT 2 2 2 1.968 2 1.799 2 2 2 2 2 2 1.997 1.995 2 2
wT 2 2 2 1.995 2 1.978 2 1.791 1.999 2 2 2 2 1.996 2 2 2
TV 2 2 2 1.842 2 1.991 2 2 2 2 1.997 2 1.990 1.989 2 2 1.935 2
T/R 1.999 2 2 1.996 2 2 2 2 1.976 1.982 1.677 1.955 2 1.998 2 2 1.999 2 1.936
B 2 2 2 2 2 2 2 2 2 2 1.996 2 2 2 2 2 2 2 1.993 1.928
R 1.983 2 2 1.996 2 2 2 2 1.888 1.853 1.543 1.746 1.999 1.994 2 2 2 2 1.963 1.424 1.996

Table 6: J-M distances computed for the Landsat-8 TM images only.
J-M distance: Minimum = 1.101; Mean = 1.968;Maximum = 2.

Class Ap Af At O Mc McV Ms MsV Ms/R SG SGV S/R T bT gT gsT sT wT TV T/R B
Af 2
At 2 2
O 2 2 2
Mc 2 2 1.999 2
McV 2 2 2 1.998 2
Ms 2 2 1.997 2 2 2
MsV 2 2 2 2 2 1.995 2
Ms/R 2 2 2 2 2 2 2 2
SG 1.999 1.999 2 2 2 2 1.996 2 1.961
SGV 2 2 2 2 2 2 2 2 1.997 1.990
S/R 2 2 2 2 2 2 2 2 2 2 2
T 2 2 2 1.999 2 2 2 2 2 2 2 2
bT 2 2 2 1.998 2 2 2 2 2 1.999 2 2 1.995
gT 2 2 2 2 2 2 2 2 2 2 2 2 2 2
gsT 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
sT 2 2 2 2 2 1.987 2 2 2 2 2 2 2 2 2 2
wT 2 2 2 2 2 1.998 2 1.995 2 2 2 2 2 2 2 2 2
TV 2 2 2 1.998 2 2 2 2 2 2 2 2 2 2 2 2 1.997 2
T/R 2 2 2 2 2 2 2 2 1.998 2 1.992 2 2 2 2 2 2 2 2
B 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.999
R 2 2 2 2 2 2 2 2 1.983 1.979 1.981 1.999 2 2 2 2 2 2 1.999 1.967 2

Table 7: J-M distances computed for the Landsat-8 OLI and RADARSAT-2 dual-pol (HH, HV) images.
J-M distance: Minimum = 1.961; Mean = 1.999; Maximum = 2.
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Once the RADARSAT-2 SAR images were combined to the 
Landsat-8 OLI images, the J-M distances increased dramatically. There 
were no class pairs having a J-M distance of less than 1.95 with most 
values above 1.99. The mean increased to 1.999 and the minimum to 
1.961 between sand and gravel (SG) and thin marine sediment over 
bedrock (Ms/R). Even the Marine clay (Mc) class did not show any 
confusion with a value of 2.0 for all class comparisons. This indicates 
that the addition of RADARSAT-2 data improves substantially the 
separation between classes. This is consistent with the findings of the 
study in the Wager Bay North area, which showed a similar increase 
in J-M distance once the RADARSAT-2 data was added to the 
image combination [8].The minimum J-M distance (1.857) from the 
northern region was between Boulders (B) and Thin till over bedrock 
(T/R). This value was lower than the one computed in the south area 
(1.999) probably because of poorer training area selection, poorer 
image quality, or because the considered classes have a lower spectral 
separability.

Classification accuracies

The overall classification accuracy (or out-of-bag accuracy) 
produced from the Landsat-8OLI data alone was 96.7% (Table 
8).This is slightly higher than what was produced from the Wager Bay 
North study (92.8%) [8].These accuracies are much higher than the 
classification accuracies produced from comparative studies using 

Landsat optical data alone over similar northern terrain in Shelat et al. 
[7, 80.3%], Grunsky et al. [5, 84.8%], and LaRocque et al. [3, 86.2%]. 
It is also much higher than the accuracies produced by Campbell et 
al. [36, 46.3%] and Wityk et al. [37, 62.2%] for areas north of Wager 
Bay. This observed improvement in accuracy could be explained by 
the use of RF as a classifier, as opposed to the MLC classifier used 
by all previous studies. It could also be caused by the better spectral 
resolution of Landsat-8 OLI images compared to Landsat-5TM or 
Landsat-7 ETM+ images used in all previous studies. Incontrast to 
all the other previous studies, the classification included topographic 
(slope and DEM) data, which were consistently ranked as the strongest 
predictors in the RF variable importance plot (Figure 4a), such as in 
Byatt et al. [8]. This was also the case for the third most important 
variable, the near-infrared (NIR) band.

When the RADARSAT-2 data were added to the Landsat-8 data, 
the overall classification accuracy (or out-of-bag accuracy) improved 
to 99.3%.The resulting classified image is shown in Figure 5. The 
minimum accuracy is related to the Alluvial plains (Ap) class with 
95.0% user’s accuracy (Table 9), which is much higher than the 
minimum value, when Landsat-8 images were used alone (90.0%). 
This class was confused with Marine clay with vegetation (McV) 
and Sand and gravel with vegetation (SGV), but the confusion was 
minimal. The improvements with adding SAR imagery were already 
observed in the previous studies, but the observed improvement was 

Class code User’s accuracy Producer’s accuracy

Landsat-8 Landsat-8 & RADARSAT-2 Landsat-8 Landsat-8 &RADARSAT-2

Ap 90.0 95.0 92.3 100.0

Af 100.0 100.0 100.0 100.0

At 95.0 100.0 93.4 100.0

O 96.3 100.0 98.1 99.1

Mc 100.0 100.0 81.6 100.0

McV 100.0 100.0 97.6 98.4

Ms 97.9 99.3 95.8 98.6

MsV 91.7 96.7 96.5 98.3

Ms/R 97.5 100.0 97.5 99.0

SG 81.3 96.7 95.5 99.4

SGV 99.3 99.3 92.7 97.2

S/R 97.5 100.0 97.5 100.0

T 97.6 98.8 100.0 100.0

bT 99.2 100.0 99.2 100.0

gT 100.0 100.0 97.6 100.0

gsT 100.0 100.0 100.0 100.0

sT 99.0 100.0 98.0 98.0

wT 98.3 99.2 96.7 99.2

TV 97.0 99.0 96.0 100.0

T/R 100.0 100.0 97.9 100.0

B 100.0 100.0 100.0 100.0

R 97.8 99.4 97.2 100.0

Average 97.1 99.2 96.4 99.4

Overall 96.7 99.3 96.7 99.3
Table 8: Class accuracies (in %) obtained by applying the Random Forests classifier to a combination of DEM, slope, and 
image data as a function of the images used in the classification.
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better than in Shelat et al. [7, 84.0%], Grunsky et al. [5, 91.9%] and 
LaRocque et al. [3, 90.8%] and in the Wager Bay North study of Byatt 
et al. [8, 98.1%]. This increase in accuracy is attributed to the high 
sensitivity of RADARSAT-2 to surface roughness and to the presence 
of moisture in the surficial materials. The rankings of importance from 
this image combination (Figure 4b) were similar to the rankings from 
the Landsat-8 image alone, with DEM and slope ranked as the most 
important data in the classification process followed by Landsat-8 
Band 5 (near infrared - NIR). Each class has unique elevation slope 
conditions and the NIR reflection is particularly sensitive to variations

in biomass which can directly point to different vegetation densities 
on the underlying surficial materials. Allof the RADARSAT-2 images 
were highly ranked, with 5 of the Landsat-8 bands being ranked last. 
Among all the RADARSAT-2 images, the RADARSAT-2 (A2 HV Wet) 
image was ranked the highest. The RADARSAT-2 HV image collected 
in wet conditions can capture difference in moisture conditions and is 
very sensitive to the vegetation covering the surficial material, which 
is important in separating various material classes. This indicates 
the importance of adding RADARSAT-2 data into the classification 
process for this particular study area.

Figure 4: Variable importance as produced by the Random forests classifier applied to a) the Landsat-8 image and b) the Landsat-8 and Radarsat-2 images.

Figure 5: Remote predictive surficial material map for the southern Wager Bay area, produced by a Random Forest classifier 
applied to a combination of Landsat-8, RADARSAT-2 (HH and HV), DEM and slope data using the All-polygon script.
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Mapping accuracies

When only the Landsat-8 images are used, the overall mapping 
accuracy (Table 10) is lower (68.5%) than for the Wager Bay North 
region study (76.4%). This is also true for most class accuracies except 
for Af, MsV, sT, Tv, and B for the user’s accuracy (Figure 6a) and for 
Af, Mc, Ms, SGV, gsT, and TV for the producer’s accuracy (Figure 6b). 
When RADARSAT-2 images were added to the classification, there 
was a significant increase in the overall mapping accuracy (76.1%) 
and in the class user’s accuracy (Table 10). This is also true for the 
class producer’s accuracy of all the classes, but Ap, Af, Ms, gT, and T/R 
(Table 10). However, such as for the overall accuracy (93.3%, Byatt et 
al. [8]), both the user’s and producer’s accuracy for most of the classes 
remained systematically lower than in the Wager Bay north study 
(Figure 7).

The classes with the low user’s accuracies are S/R (11.1%), T/R 
(53.3%), At (55.6%), R (60.6%), O (61.1%), Ap (63.6%), and gT 
(72.7%) (Table 10). The corresponding confusion matrix (Table 11) 
shows that S/R is mainly confused with SGV, T/R is mainly confused 
with R and SGV, At is mainly confused with Ms, R is mainly confused 
with Ms/R and SGV, O is mainly confused with McV and TV, and gT 
is mainly confused with O, SG and bT. For the producer’s accuracies, 
the low accuracies occur for S/R (20.0%), SGV (47.4%), SG (51.4%), 

O (64.7%), gT (72.7%), T (73.1%), and Mc (73.3%) (Table 10). The 
confusion matrix of Table 11 shows that S/R is mainly confused with R 
and T/R, SGV is manly confused with R, while SG is mainly confused 
with Ms and R.

Adding RADARSAT-2 in the classification helps discriminating 
between several classes. For example, when using Landsat-8 alone, 
the lowest J-M distance (1.1) occurring between At and Ms increased 
to 1.99 with the addition of the RADARSAT-2 images (Tables 6 and 
7). Indeed, At (Figure8b) and Ms (Figure 8c) have similar spectral 
signatures, but slightly different roughness characteristics, with Ms 
having a somewhat smoother surface than At, resulting in less radar 
backscatter. This is also the case between Ap (Figure 8a) and SG (Figure 
8e), for which the J-M distance increased from 1.59 to 1.99, Both 
classes have similar spectral signatures, but SG has a smoother surface 
resulting in low backscatter. The J-M distance between Ms (Figure 
8c) and Mc (Figure 8d) improved from 1.64 for just Landsat-8 to 2.0 
when the RADARSAT-2 images were included. Both classes present 
similar spectral response, but entirely different radar responses due 
to roughness and topographic variations which imparts a unique 
texture for this class on the SAR imagery. In addition, one can see the 
contribution from the slope image for separating Mc which drapes the 
glacial landscape and is characterized by various slopes and directions 
imparting a unique slope signature for this class.

Figure 6: Mapping accuracy comparison between the study on Wager Bay North [8] with this study for the 
Landsat-8 classified image for a) the User’s accuracy and b) the Producer’s accuracy

a) User’s accuracy

b) Producer’s accuracy
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a) User’s accuracy

b) Producer’s accuracy

Figure 7: Mapping accuracy comparison between the study on Wager Bay North (Byatt et al. 2018) with this study 
for the Landsat-8 and Radarsat-2 classified image for a) the User’s accuracy and b) the Producer’s accuracy.

Class code User’s accuracy Producer’s accuracy
Landsat-8 Landsat-8 & RADARSAT-2 Landsat-8 Landsat-8 & Radarsat-2

Ap 45.5 63.6 83.3 87.5
Af 100.0 100.0 100.0 100.0
At 55.6 55.6 62.5 83.3
O 45.0 61.1 34.6 64.7

Mc 50.0 78.6 63.6 73.3

McV 90.9 93.5 78.9 90.6
Ms 78.8 78.1 81.3 75.8

MsV 86.7 93.3 81.3 87.5
Ms/R 74.6 88.7 81.0 75.8

SG 71.4 81.8 42.4 51.4
SGV 75.9 94.7 33.3 47.4
S/R 22.2 11.1 40.0 20.0
T 83.9 82.6 72.2 73.1

bT 61.5 76.7 75.0 82.1
gT 69.2 72.7 81.8 72.7
gsT 60.0 90.9 93.8 100.0
sT 81.5 89.5 88.0 89.5
wT 86.1 91.4 86.1 97.0
TV 78.6 95.7 84.6 91.7
T/R 36.5 53.3 65.7 85.7

B 100.0 100.0 90.0 100.0
R 61.4 60.6 70.1 76.8

Average 68.9 77.9 72.3 78.5
Overall 68.5 78.2 68.5 78.2

Table 10: Mapping accuracies (in %) obtained by comparing the GPS validation sites to the classified image produced by applying the 
Random Forests classifier to Landsat-8, DEM and slope data, alone or with RADARSAT-2 dual-polarized intensity images (HH and HV).
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Figure 8: Images of some surface material classes found the Wager Bay South area.

a) Alluvial Plain (Ap) b) Alluvial Terrace (At)

c) Marine Sand (Ms) d) Marine Clay (Mc)

e) Sand and Gravel (SG) f) Sand and Gravel with Vegetation (SGV)

g) Thick till (T) h) Bouldery till (bT)

i) Thin Till (T/R) j) Bedrock (R)
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The J-M distances between T/R (Figure 8i) and SGV (Figure 8f) 
increases from 1.67 to 1.96 when RADARSAT-2 are included in 
the classification. The distinct difference between roughness and 
vegetation/moisture characteristics can be seen when comparing 
both figures. The rough surface of T/R (Figure 8i) results in high 
backscatter on the SAR image, whereas SGV (Figure 8f) presents a 
smoother surface with far less backscatter. The same can be said when 
separating T/R from R, as the J-M distance improves from 1.42 to 
1.96 when RADARSAT-2 are included in the classification. Bedrock 
outcrops (Figure 8j) present a much smoother surface to the radar 
than T/R (Figure 8i), resulting in less backscatter. The J-M distance 
between bT and T improved from 1.47 to 2 when RADARSAT-2 
images were included in the classification. bT (Figure 8h) presents a 
much rougher surface resulting in slightly higher backscatter than T 
(Figure 8g).

These mapping accuracies obtained by comparing the classified 
image to ground observations (Table 10) are lower than the 
classification accuracies obtained by comparing the classified image 
to training areas (Table 8). This is expected due to the differences in 
scale between the imagery and the geologists’ observations on the 
ground as well as how the training areas characterize the terrain using 
only topography, vegetation and moisture, roughness and spectral 
variations compared to how the geologist synthesizes the scene from 
ground level with respect to the classes of interest. Because of the 
same scale difference, our map can have some localized differences 
with the surficial geology map established from field observations and 
the surficial geologist knowledge of the area [23]. For example, the 
coarser grained till classes (bT, gT, and gsT) should occur closer to the 
ice divide. Marine sand classes are sporadically misclassified south of 
Wager Bay in NTS 56H and 46E since they occur above the marine 
limit that was delineated from field observations (see Randour et al. 
[19], such as in the lowlands surrounding Roes Welcome Sound). As 
a result, large areas of bare bedrock along the coast of Roes Welcome 
Sound are mapped as sand and gravel or as thin marine sands over 
bedrock. Whilesome of these discrepancies may explain the lower 
mapping accuracy in the southern region compared with the Wager 
Bay North study, these accuracies are comparable, and indicate that 
the methods are applicable to other similar regions in the Arctic.

Conclusions

A surficial materials map was produced with 22 classes for an 
area located south of Wager Bay, Nunavut using Random Forests, a 
non-parametric classifier, applied to a combination of RADARSAT-2 
C-band dual- polarized (HH and HV) and Landsat-8 OLI images with 
a digital elevation model and slope data. The addition of RADARSAT-2 
C-HH and C-HV images to the classification greatly increased the 
overall classification accuracies to 99.3% compared to 96.7%, from 
using only Landsat-8, DEM, and slope data. For all the classes (but 
few), the user’s and producer’s class accuracy increased when the 
RADARSAT-2 images were added to the classification, leading to a 
class accuracy higher than 95% in most of the cases. This increase in 
accuracy shows the importance of including the RADARSAT-2 into 
the classification.

The resulting maps were compared to 648 georeferenced sites with 
field observations or interpreted from aerial photographs/Google 
Earth to determine the mapping accuracy. It increased from 68.5% 
when Landsat8 images were used alone to 76.1% when RADARSAT-2 
images were added. Mapping accuracy was lower in the Wager Bay 
South study than in the North study possibly because of a lower

number of georeferenced sites for comparison, specifically ground 
stations. The general increase in accuracies however, both classification 
and mapping, indicate the importance of addingRADARSAT-2 data. 
The type of RADARSAT-2 data used in this study is limited to images 
with an incidence angle between 20° and 49.3°, and only C-HH and 
C-HV bands. The work of Shelat et al. [7] showed the importance of 
including a variety of incidence angles (shallow, medium, and steep) 
in surficial material mapping, as it can increase class separability and 
classification accuracies. The inclusion of adding VH and VV images 
could also increase the classification accuracy, as it would add in 
more data for the classification process to work with. There is also the 
possibility of including polarimetric data, which can be derived from 
RADARSAT-2, to examine the potential of this new data source in 
mapping surficial materials.
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