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to assess and manage the risks associated underground construction 
[7-10]. Most accidents in underground construction are associated 
with uncertainties. It is therefore essential to develop risk analysis 
systems.

Historically, risk assessment and risk analysis have not assumed 
particular relevance when evaluating underground projects and other 
major geotechnical projects. This has been changing, and risk analysis 
has been recently successfully implemented in major transportation 
infrastructures projects in UE, USA and Switzerland, using both 
commercial and research software for risk analysis. Special reference 
can be made to the Decision Aids for Tunneling (DAT), developed 
at the Massachusetts Institute of Technology in co-operation with 
Ecole Polytechnique Fédérale de Lausanne [11]. DAT is an interactive 
program that uses probabilistic modeling to analyze the effect 
of geotechnical uncertainties and construction uncertainties on 
construction costs and time through probabilistic modeling. Recent 
developments were introduced allowing dealing with other structures 
like embankments, bridges and engineered geothermal systems.

Prediction of geotechnical formation behavior in geoengineering 
is complex because of the uncertainties associated with the 
characterization of rock masses. In large projects, there is often a great 
amount of geotechnical data available which can help in reducing 

Abstract

The use of underground space for engineering systems has been increasing worldwide. Underground 
geoengineering is characterized by complex, uncertain geology and geomechanics that present 
challenges and require new tecniques to be dealt with. These challenges include large overburden 
which cause high stresses and temperatures, that require complicated engineering design. Additional 
environmental challenges exist in cases related to petroleum engineering, nuclear waste disposal, storage 
of products and energy, storage of CO2, geothermal energy and others. In large projects, typically a large 
amount of geotechnical data is generated. This data can hold valuable information that can be used to 
improve decision making and optimize design and construction processes. It is therefore necessary to 
define standard ways of collecting, organizing and representing the obtained data. There are automated 
Artificial Intelligence (AI) tools and pattern recognition techniques that enable one to analyze this vast 
data - Data Mining (DM) techniques. After discussing the general challenges associated with deep 
underground engineering and the application of AI and DM techniques in underground construction, 
this paper presents case studies where innovative DM-based techniques were developed and applied by 
the authors. In particular, the paper demonstrates the application of DM to the design and construction 
of a large and deep underground hydroelectric scheme, an underground laboratory, and undergound 
mining specifically based on rockburst risk assessments.

Introduction

The use of underground space for engineering systems has been 
increasing worldwide. Structural design of underground works is a 
process that takes into account various aspects which depend on the 
specific nature of the works. It covers the conception stage - choice of 
the site, location and orientation, and shape and geometry of eventual 
cavities; and the calculation stage - determination of structural 
solutions for achieving a certain performance. A great effort is made 
to ensure safety of the works, and each step is taken to integrate 
advances in various fields, like site investigation, hydromechanical 
characterization, computer modelling techniques, monitoring 
techniques, theory of structural safety and other theories [1,2]. 

Underground geoengineering is characterized by complex, 
uncertain geology and geomechanics that present challenges 
and require new tecniques to be dealt with. Problems are mainly 
related to heavy overburden which causes high levels of stresses 
and temperatures leading to a difficult geological environment that 
requires complex engineering design [3-6]. Special cases of the use 
of the deep underground are related to petroleum engineering, 
nuclear waste disposal, storage of products and energy, storage of 
CO2, geothermal energy, and these pose specific problems due to the 
environmental consequences they may have in case of failure.

The majority of underground construction projects have been 
completed safely. There is, however, an intrinsic risk associated with 
underground construction, since much is largely unknown. For 
example, several accidents have occured in various tunneling and 
mining projects that have resulted in delays, cost overruns, and in a few 
cases more significant human consequences such as injury and loss of 
life. As is common with problems in construction projects, these have 
been widely publicized, and pressure has been mounting from society 
to eradicate these accidents. There is, therefore, an increasing urgency 
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uncertainties in, for example, design values for the parameters [12]. 
The data can hold valuable information such as trends and patterns 
that can be used to improve decision making and optimization 
processes. It is however necessary to define standard ways of 
collecting, organizing and representing the data. Artifical Intelligence 
(AI) tools and pattern recognition techniques enable one to analyze 
datasets to retrieve information there. These are Data Miniming (DM) 
techniques [3,13-16]. DM is an area of computer science that lies at 
the intersection of statistics, machine learning, data management and 
databases, pattern recognition and artificial intelligence. The formal 
and complete analysis process is called Knowledge Discovery from 
Databases (KDD) that defines the main procedures for transforming 
data into knowledge [17-18].

This paper focus on the use of DM techniques in underground 
design and construction. After discussing the general challenges 
associated with deep underground engineering, and the application 
of AI and DM techniques in underground construction, the paper 
presents case studies where innovative DM-based techniques were 
developed and applied by the authors to address issues associated with 
deep undergound construction. In particular, the paper demonstrates 
the application of DM to the design and construction of a large and 
deep underground hydroelectric scheme, an underground laboratory, 
and undergound mining.

Challenges of Deep Underground Engineering

The use of deep underground space for engineering systems has 
been increasing due to urbanization. This is true for transportation 
systems, namely in road and railway transportation; in energy systems 
related to renewable energy, like hydropower and geothermal energy, 
as well as energy storage. It is also true for disposal of nuclear waste, 
storage of CO2 as well as of liquid and gaseous hydrocarbons, to water 
supply systems, for deep underground research laboratories, and of 
course for underground mining [1-2,4-6,19-21]. As such, there is a 
need for more rigorous rock engineering studies in the framework 
of different types of projects of deep underground engineering, as 
indicated in Figure 1.  

In this section we provide illustrative examples of important 
underground projects worldwide and the associated challenges.

General projects

Nowadays, transport systems play an important role in supporting 
the integration of several regions and countries like in EU. Tunnels are 
very important within transport infrastructures. In railway tunnels, 
the construction of very long and deep railway tunnels was already 
performed with Gothard base tunnel in Switzerland (57.1 km), Seikan 
tunnel in Japan (53.9 km), Channel tunnel in UK and France (50.5 km), 
Yulhyeon in South Korea (50.3 km) and Songshan lake tunnel in China 
(35.4 km). Are now under construction extensive tunnels, like Brenner 
base tunnel in Austria (55 km) and Lyon-Turim base tunnel in France 
and Italy (52 km) [9,22-23]. In road tunnels, reference is made to the 
Laerdal tunnel, in Norway, the longest one with 24.5 km in extension, 
to the Yamate tunnel in Japan with 18.2 km and to the Zhongnshan 
tunnel in China with 18.02 km. Very long water tunnels were 
already constructed like Delaware Aqueduct in USA with 137.0 km 
and the Paijanme tunnel in Finland with 120.0 km. Several severe 
accidents occurred in some of the mentioned tunnels. As examples, 
large quantities of underground water causes flooding in Seikan 
tunnel; and collapses occurred at Fadio zone, Gotthard base tunnel, 
caused by squeezing ground that let to excessive deformation and led 
latter to partial collapse of the lining [9,24].

In deep mining activities the major problems are associated with 
large deformations and rockburst due to overstressing of the rock mass 
caused by excavations at great depth. Comprehensive investigations of 
deep mining mechanics are of great interest. In coal mines, several 
types of events were identified and classified [25]. The accidents 
can cause loss of live, equipment damage and damage to the tunnel 
structure that may lead to a collapse. Nowadays, coal mines reach 
depths between 1,200 to 1,400 m in China and in some European 
countries, and more than 3,000 m for gold mines in Brazil and South 
Africa [26]. The coal resources play a leading role in the energy strategy 
in China, and represents about 70% of the total energy consumption. 
Deep coal resources below 1,000 m represents an important part [27]. 
At the beginning of the 21st century large deformation failure problems 
become more challenging with increasing of depth. This was basically 

Figure 1: Perspectives in deep underground engineering.

https://doi.org/10.15344/2456-351X/2018/158


Int J Earth Environ Sci                                                                                                                                                                                             IJEES, an open access journal                                                                                                                                          
ISSN: 2456-351X                                                                                                                                                                                                       Volume 3. 2018. 158

Citation: Sousa LR, Miranda T, Sousa RL, Tinoco J (2018) Deep Underground Engineering and the Use of Artificial Intelligence Techniques. Int J Earth Environ 
Sci 3: 158. doi:  https://doi.org/10.15344/2456-351X/2018/158

       Page 3 of 24

considered because the traditional 121 method was not suitable for 
deep mining purpose. The theory of CCBT (Cutting Cantilever Beam 
Theory) was put forward and provided the basis for the non-pillar, 
under which the 110 mining method was developed [28].

Regarding CO2 storage activities, various technologies have been 
developed over recent years to address the increasingly urgent 
demand for the protection of the Earth’s atmosphere from ozone 
depleting emissions, and ensure sustainability. This is true for 
different gaseous emissions, most significantly for carbon dioxide 
(CO2), where significant advances have been made in the processes 
of emissions reduction. Furthermore, it is no longer acceptable to 
simply reduce (or eliminate) emissions, but rather capture and store 
atmospheric CO2 in processes that lead to an overall reduction of the 
atmospheric CO2 resulting in carbon negative facilities, cities and 
counties. Different options for carbon capture, utilization and storage 
(CCUS) technologies exist and have been or are in the process of 
being implemented worldwide [3,29-30], take into account not only 
energy demand but also environmental requirements. In general, it is 
now accepted that CCUS is a viable technological solution to reduce 
GGH emissions and can be introduced as a strategy within the larger 
context of climate change policies [29-31].

With these technological advancements, the economics of large, 
commercial scale CCUS schemes has become more viable. This is 
particularly true when governmental entities use policies in place 
that promote CCUS such as carbon credit incentives (as opposed 
to but possibly coupled with taxation on carbon emissions). More 
recently, much research is being conducted on innovative techniques 
to increase the financial viability of CCUS such as the use of the 
captured carbon in enhancing the recovery of oil and gas fields where 
conditions are favorable. Continued research in every stage of the 
CCUS process is only likely to decrease costs and make CCUS more 
economically viable.

Despite these advancements, CCUS, as with any operation in the 
underground is uncertain. These uncertainties come from various 
sources, and there are hazards and risks associated with them. The 
storage of CO2 in deep onshore and offshore geological formations 
uses many of the technologies developed by oil and gas industry, and 
can be coupled with enhanced oil and gas recovery schemes (EOR 
and EGR) and in saline aquifers (Figure 2), [29-36]. CO2 can also be 
stored in coal beds, particularly in unminable deep coal seams and 

well-sealed abandoned coal mines [36]. CO2 should be safely injected 
and stored at well characterized and properly managed sites to ensure 
the long-term safety of a geologic CO2 storage project [30,37-38]. CO2 
is injected in deep geological formations where conditions of pressure 
and temperatures are favorable for CO2 to exist in the so-called 
supercritical or liquid form, requiring less volume than in its gaseous 
form [29]. Adequate planning of the injection and storage processes 
is essential to ensure safety with no CO2 leakage during the entire 
storage period. At depths below about 800-1,000 m, CO2 has a liquid-
like density, which makes the potential use of porous sedimentary 
rocks as underground reservoirs possible.

There are different possibilities for geological sequestration as 
illustrated in Figure 3 [35-39]. Several geological solutions (closed 
systems) can be considered as feasible, such as depleted oils and gas 
reservoirs, deep saline aquifers, shale gas, coal seams, abandoned 
coal mines, among others. Coal seams and abandoned coal mines are 
currently being used to produce enhanced coal bed methane (ECBM), 
as well shale as gas technologies which can be viable in terms of 
permanent CO2 disposal [30,39-40].

The Jinping II hydroelectric scheme, China

The first example is the Jinping II hydroelectric project constructed 
recently in China. Jinping II is a project by Ertan Hydropower 
Development Co. Ltd and is located in Yalong River. Jinping site is 
unique in that it utilizes a natural 180-degree bend in the Yalong 
River (Figure 4). Jinping II has a large underground complex for the 
powerhouse with 8 units and a total installed capacity of 4,800 MW, 
to produce a multi-year average annual output of 24.23 TWh. The 
construction started in August 2008 and the powerhouse was finished 
in 2012. The project, includes four high pressure tunnels 16.67 km 
long, with a 60 m spacing between them, a drainage tunnel, two access 
tunnels, and a large underground powerhouse structure [4,10,41]. Two 
of the high pressure tunnels are excavated using drilling and blasting 
(D&B), and the other two excavated using tunnel boring machines 
(TBM). The construction of the tunnels for the high pressure circuit 
and associated auxiliary tunnels and drainage tunnel was the most 
challenging portion of the project. Figure 5 summarizes some of the 
issues faced during the construction of the high pressure hydraulic 
circuit of Jinping II [10]. These consisted mainly of rockbursts, 
waterbursts and large deformations.

Figure 2: Carbon storage at Sleiner [29].
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Figure 5: High pressure hydraulic circuit of Jinping II [4].

Figure 4: Location of the Jinping II hydropower station [10].

Figure 3: Different situations of geological sequestration [3].
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The depth of the overlying strata was between 1,500-2,000 m, with 
a maximum of 2,525 m. Rockbursts were observed in deep marbles 
due to the significant depths and large diameters of the extensive 
tunnels. A very severe rockburst occurred on November 2009 during 
the excavation of the drainage tunnel by using Robbins TBM. This 
rockburst was responsible for the destruction of the main beam of 
the TBM and an area of about 30 m behind the cutter head [4]. As a 
consequence the Chinese Society for Rock Mechanics and Engineering 
organized a Consulting Workshop in 2009 to review and discuss the 
geotechnical problems faced during the construction of the at Jinping 
II tunnels, with particular emphasis on the occurrence of rockbursts. 
Several reports were produced focusing on the rockburst problem 
[41-46]. These reports contained estimations of in situ stresses, the 
geometry of the excavations when using D&B method, modelling 
and especially rockburst prediction as well as suggestions on how to 
mitigate the TBM problems. Another important consequence was the 
creation of a database containing information regarding the rockburst 
events that occurred at Jinping II. The data was used, by applying DM 
techniques to develop models to predict the probability of occurrence 
of rockbursts and their characteristics: type, location, depth and 
width, and time delay [46]. 

During the excavation of Jinping II diversion tunnels 1 and 2 at 
depth between 1,550 and 1,860 m, a chlorite schist formation was 
encountered [4,47]. The stresses were about 41-50 MPa (Figure 5). 
The geological conditions were complex and the lithology frequently 
changed. Large deformations occurred and two serious collapses 
happened due to the use of inadequate support systems. Laboratory 
tests were performed to characterize the physical and mechanical 
properties of the chlorite schist and an elastic-plastic constitutive 
model was developed. For stability control and support optimization, 
an improved support system was adopted to control large deformations 
and an over-excavation approach was followed [4,47].

Finally, because of the fracture and karst nature of the terrain, 
several waterbursts of high pressure groundwater occurred during 
the construction of the tunnels [9]. Karst related waterbursts were 
predominant at ends of the tunnels as illustrated before in Figure 
5. Figure 6 shows an image of a waterburst during the excavation of 

one of the access tunnels. Ground water treatment was necessary to 
mitigate waterbursts [4].

The Venda Nova hydroelectric scheme, Portugal

In Portugal, investiments in renewable energies have significantly 
increased in the last decades, particularly in sun, wind, and hydropower 
from dams by pumped storage systems. Some of the new hydropower 
systems derived from the repowering of existing schemes. This 
technology permits storing energy during the periods of low demand. 
This is the case of Venda Nova hydroelectric scheme [48]. Two new 
schemes were built to complement the Venda Nova/Vila Nova power 
scheme built in the 50’s: Venda Nova II was completed in 2005 and 
Venda Nova III in 2016 as shown in Figure 7. Both schemes are 
underground connecting Venda Nova and Salamonde reservoirs with 
extensive hydraulic circuits and deep underground cavern complexes.

The scheme of Venda Nova II is almost fully comprised of 
underground facilities, including caverns and several tunnels and 
shafts (Figure 8) [49]. A large dataset was generated that consisted 
of the results of the application of the empirical systems and results 
from laboratory (uniaxial compressive strength and sliding of 
discontinuities) and in situ tests (Small Flat Jacks – SFJ, Large Flat Jacks 
– LFJ and dilatometers) [12,49]. The database was large enough to be 
mined. Prior to doing so, it was necessary to clean the data to remove 
duplicated records. The reduced number of some tests hindered 
the possibility to include them in data mining process because it is 
important that, for each type of input variable, a large amount of data 
exists. Data were organized and structured in a database composed 
by 1,230 examples and twenty-two attributes which were analyzed by 
applying DM techniques.

Underground laboratory at DUSEL, USA

Underground laboratories are important deep underground 
structures that have to be considered. They can include existing 
infrastructures to host physics experiments [50-56]. Such laboratories 
include INO in India and of course DUSEL in the USA and CJPL 
in China [51,57-58]. A comparison of the main underground 
laboratories is indicated in Figure 9.

Figure 6: Image of a waterburst and flooding.
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Figure 9: Comparison of main deep underground laboratories in the world [57-58].

Figure 8: Scheme of the underground structures composing the Venda Nova II 
complex [12].

Figure 7: Venda Nova II and III hydroelectric schemes [48].
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The National Science Foundation (NSF) in USA choose Homestake 
as the location for an underground laboratory. The project was 
known as DUSEL (Deep Underground Science and Engineering 
Laboratory) project. The laboratory was seen as a multi-discipline 
facility with particle physics providing the lead but other disciplines 
being a significant part of the facility, including geomicrobiology, 
geosciences, and geoengineering. The possibilities for how the non-
physics sciences would participate were described in detail in the 
EarthLab report to the NSF [19]. A representation of DUSEL is 
illustrated in Figure 10. Because some of the physics experiments 
being envisioned, the laboratory required large cavities at depth, 
for example, right circular cylinders with dimensions of as much as 
86 m high and 60 m in diameter at a depth of about 1.5 km below 
the surface (4850 Level). A geotechnical investigation program was 
undertaken as part of the site characterization [51]. The Laboratory 
is located in the Precambrian core of the Black Hills of South Dakota. 
The geologic units exposed in the main campus at the 4850 Level 
consist of Precambrian metamorphic rocks that are intensely folded 
and plunging steeply to the southwest. From oldest to youngest, they 
include a metamorphosed basalt (now an amphibolite) known as the 
Yates Unit, the Poorman Fm., a metasedimentary units consisting 
of phyllites and schists, and rhyolites intruded during the Tertiary 
Period. Using a database of geomechanical information gathered in 
the scope of the DUSEL project, new geomechanical models for the 
prediction of rock mass quality indexes, namely RMR, Q and GSI 
were developed using DM techniques [59].

Artificial Intelligence Techniques

AI techniques are progressing very rapidly since 1956. AI today 
is labeled as a narrow when it is designed to perform a specific task 
or labeled general when designed to outperform humans at a very 
cognitive task [60]. In the area of deep underground engineering, 
tasks are for the most part narrow. The prediction of geotechnical 
formation behavior in geoengineering is complex because of the 
uncertainties in characterizing rock masses. In large projects, the 
great amount of geotechnical data that is generated and collected can 
be used to reduce uncertainties [12].

Data can hold valuable information such trends and patterns that 
can be used to improve decision making and optimize processes. 
Therefore, it is necessary to define standard ways of collecting, 
organizing and representing data. There are automatic tools from 
the field of AI and pattern recognition that enable one to analyze 
and interpret data using DM techniques [13,15-16]. DM is an area 
of computer science that lies at the intersection of statistics, machine 
learning, data management and databases, pattern recognition, 
artificial intelligence and other areas (Figure 11).

KDD is a formal and complete analysis process that defines the 
main procedures for transforming data into knowledge. The KDD 
process consists in the following steps [13,49,61] (see Figure 12): 
collection of target dataset; data warehousing; data are transformed 
in appropriate forms for the DM process; selection of DM tool; 
relationship identification of DM (classes, clusters, associations); 
interpretation of results; and consolidation of discovered knowledge. 
There are several DM techniques, each one with its own purposes and 
capabilities, namely KBS systems, Decision Trees and Rule Induction, 
Neural Networks, Fuzzy modeling, Support Vector Machines, 
K-Nearest Neighbors, Bayesian networks (BN), Learning Classifier 
Systems and Instance-Based Algorithms [49,62-64].

Studies using a formal KDD framework are still not common in 
rock mechanics related activities, however when applied they can 
provide important insights into the most influential parameters on 
the behavior of rock masses. A application of this is a study done for 
the DUSEL laboratory (Figure 10) [19], where innovative regression 
models, using different DM techniques, were developed to determine 
geomechanical indexes for the project [59]. One of the most 
important tasks in the KDD process is the DM step which consists of 
choosing a learning algorithm for training and ultimate build a model 
that represents the data. Once the training phase is completed, the 
obtained model will be evaluated using a test data set that has not 
been used during the learning process. The results consist of several 
different models however there is no universal one to efficiently solve 
all the problems.

Figure 10:  Representation of DUSEL - Deep Underground Science and Engineering Laboratory [19].

https://doi.org/10.15344/2456-351X/2018/158


Int J Earth Environ Sci                                                                                                                                                                                             IJEES, an open access journal                                                                                                                                          
ISSN: 2456-351X                                                                                                                                                                                                       Volume 3. 2018. 158

Citation: Sousa LR, Miranda T, Sousa RL, Tinoco J (2018) Deep Underground Engineering and the Use of Artificial Intelligence Techniques. Int J Earth Environ 
Sci 3: 158. doi:  https://doi.org/10.15344/2456-351X/2018/158

       Page 8 of 24

A brief overview of the techniques used in our studies is presented 
next. A Decision Tree (DT) is a tree like graph that represents a set of 
rules for classifying data. These rules can be learned by using a class-
labeled training data set [49,59]. Artificial Neural Networks (ANN) 
are deep learning techniques modelled after how neurons operate 
within the human brain [12]. They are formed by groups artificial 
neurons connected in layers, where signals travel from the first (input) 
to the last (output) layer, similar structure to the brain neurons. 
These networks, which can be learned from data, are particularly 
useful in complex applications, to recognize patterns and to predict 
future events. The technique of Support Vector Machine (SVM) are 
supervised learning models normally used for data classification and 
regression analysis. Given categorized training data, SVM determine 
an optimal plane that defines the decision boundaries, i.e. the distance 
between classes [65]. Finally, Bayesian networks (BN) are graphical 
representations of the joint probability of a certain domain under 
certain simplifying assumptions [9,66].

The increasing interest in DM causes the need to define standard 
procedures to carry out the analysis. In this context, the two most used 
methodologies in DM are the CRISP-DM (Cross-Industry Standard 
Process for Data Mining) and the SEMMA (Sample, Explore, Modify, 
Model, and Assess). The CRISP-DM methodology was developed by a 
group of companies. It is an iterative and interactive hierarchic model 
which develops in several phases [67], (Figure 13). The SEMMA 

methodology was developed by the SAS Enterprise Miner institute 
which delivers services in the areas of DM and decision support 
[17,49].

Several works have already applied DM techniques in deep 
underground space.

One such work relates to tunnel management and maintenance for 
old tunnels [62]. A KBS system named MATUF was developed and 
techniques for modelling decisions under uncertainty based on BNs 
were used. Figure 14 indicates the levels of information in the system 
MATUF and Figure 15 illustrates a BN for water presence problems.

Abdulla et al. [68], proposed an innovative ANN based probabilistic 
classifier to obtain the probability gypsum presence in the subsurface 
with an application to Masdar City in UAE. ANN proved to be an 
efficient tool for spatial interpolation due to its noise immunity and 
complicated pattern recognition capabilities for the application of a 
metro line at Masdar city. Figure 16 illustrates the neural network 
used in the study.

Another work that is related to coal mines is that conducted by 
Mahdevar et al. [69] for stability prediction of gate roadways in longwall 
mining using ANNs. Datasets of roof displacements monitored of a 
1.2 km roadway in Tabas coal mine in Iran were setup in order to 

Figure 12: DM and knowledge discovery process [13].

Figure 11: Multidisciplinary relations of DM [17].
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Figure 13: Stages of a CRISP-DM process [67].

Figure 14: Levels of information to the system MATUF [62].

Figure 15. BN for water presence problems [62].
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develop an ANN model. After several tests based on trial and error, a 
four-layer network with an input layer, two transfer functions in the 
first and the second hidden layers, and a linear transfer function in 
the output layer was found to be optimum. As indicated in Figure 17, 
seven and six neurons were introduced to the first and second hidden 
layers, respectively.

Another work related to coal mines is the study by Slezak et al. [70] 
on a decision support system for monitoring coal mine processes 
and predictive analytics of sensor readings. Hazard models were 
constructed, as well as functionalities responsible for data acquisition 
and storage, data cleaning and transformation. The architecture of 
the decision support system is presented on Figure 18. It consists of 
the following major components: Data warehouse; data preparation 
and cleaning module; and modules that utilize the data coming both 
from the data warehouse and directly from coal mine systems, mainly 
analytical, prediction and expert systems modules. The concept of 
methane concentration was divided into four fuzzy sets. Depending 
on the kind of sensor and its location, its status can be related to 
different values of methane concentration (Figure 19).

Underground Hydroelectric Schemes

Introduction to Venda Nova II

For deep underground hydroelectric schemes, analytical models 
can be developed using different sets of parameters for the prediction 
of variables of interest so that they could adapt to the level of 
knowledge concerning the rock mass and to the project development 
stage. The case of Venda Nova II presented before was chosen (Figure 
7 and Figure 8). The goal was to develop models to calculate strength 
(friction angle - φ’; cohesion - c') and deformability of the rock mass 
(E).

Geotechnical data were organised and structured in a database 
composed by 1,230 examples and twenty-two attributes which are 
described in Table 1. The attributes were mainly parameters of the 
empirical classification systems RMR and Q, the RMR class and the 
UCS of the intact rock [73-75]. From the original attributes, others 
were calculated including the geomechanical parameters by means of 
analytical solutions. The calculated geomechanical parameters were 
added to the database with other attributes to check their possible 
influence on the models. Globally, eleven new attributes were added. 

Figure 17: View of the proposed MLP network with 9-7-6-1 topology [69].

Figure 16: Neural network-based probabilistic gypsum classifier [68].
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From this point, the geomechanical parameters obtained using this 
methodology will be called “computed values” while the ones obtained 
with the DM models will be called “predicted values”. It is important 
to mention that the “computed values” for the deformability modulus 
were calibrated with the results of reliable and large scale in situ tests, 
namely LFJ tests.

In spite of the high number of records within the database, there 
were some limitations. Considering the histograms of each variable 
of interest, the main limitations were: UCS>100 MPa, RQD values 
over 65 and slightly wet to dry rock mass. Therefore, the models

developed in this work should only be applied to rock masses with 
similar characteristics.

The SAS software was used as the modelling tool [17]. The 
evaluation of the models was performed using the results provided 
by this software and complementary calculations on spreadsheets. 
In regression problems, the goal is to estimate the model which 
minimizes an error measurement between real and predicted values 
considering N examples. The error measures used were the following: 
MAD (Mean Absolute Deviation) and RMSE (Root Mean Squared 
Error) [49]. To validate and assess the models accuracy, the holdout 
method was used [12].

Figure 18: The architecture of the decision support system [70].

Figure 19: Fuzzy set representation of the states of methane concentration [70].
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Calculation of deformability modulus at Venda Nova II

The deformability modulus (E) is an important input parameter in 
any rock mass behaviour analysis. For a more representative value of 
E, considering all factors, large scale in situ tests are needed. LFJ tests 
were performed and analysed [49,74]. However, most procedures 
found in the literature to estimate this parameter for isotropic rock 
masses are based on simple expressions related to empirical systems 
or other index values. Several empirical expressions were used for the 
calculation of E of the rock mass using DM techniques [12,49]. The 
expressions used in the study are given in the references [71-79].

To obtain one final value of E from the application of these 
expressions, a statistical methodology was established. For each 
case, the results of all expressions were computed, as well as their 
mean and standard deviation. The values outside the range of one 
standard deviation from the mean were eliminated and the mean of 
the remaining values was computed and considered as the final value 
of E. The values of E obtained by the described methodology were 
compared with the results of LFJ tests [49]. Table 2 presents some 
statistical results of this evaluation. The mean values obtained by 
both methodologies is similar (around 4% of variability). The main 
difference is the higher dispersion in the calculated values translated 
by a higher standard deviation which is normal because the LFJ 
tests are much more accurate in determining E than the empirical 
expressions. Thus, despite the higher variability, the calculated values 
match well to those obtained by reliable in situ tests and can be 
considered realistic predictions.

Preliminary calculations show that a logarithmic transformation 
ln(E) would improve the accuracy of the models. The main reason of 
this transformation was to avoid the prediction of negative values for 
E in poorer rock mass conditions, which was observed in some cases 
with the linear model. The parameters that produced the most accurate 
model were directly related to geomechanical indexes, namely the 
RMR and Q values. Additionally, these indexes assemble important 
information for the rock mass deformability prediction. These models 
can be used for the prediction of E when a thorough characterization 
of the rock mass is available. The results are the following: i) regression 
– R2=0.978±0.001; MAD=0.088±0.004; RMSE=0.137±0.009; ii) ANN 
– RMSE=0.141±0.016.

The regression model obtained is:

                                                                                                              (1)

The linear regression model is very accurate, and even slightly 
outperforms the ANN model in terms of RMSE. Because ln (E) 
ranged from approximately -0.57 to 4.22, the error can be considered 
negligible for engineering practice. The model is stable for all ranges 
of observed values as shown in Figure 20. In terms of geomechanical 
coefficients, the RMR was the most important parameter for the 
calculation of E. Indeed, several regression models were tested but the 
most reliable models were based in this index. A simple correlation 
between E and RMR using all available data led to very acceptable 
results. The expression for this correlation was:

                                                                                                               (2)

Name Description

RQD Rock Quality Designation.

Jw, Jn, Jr, Ja, SRF Q system factors [71].

Q Rock mass quality index [71].

Q’ Altered form of the Q index (Q’ = RQD/Jn * Jr/Ja).

UCS Uniaxial Compressive Strength.

P1, P2, P3, P4, P5, P6 RMR weights related to: UCS, RQD, joint spacing, joint conditions, water conditions and joint orientation.

P41, P42, P43, P44, P45 Joint conditions – persistence, aperture, rugosity, filling and weathering.

RMR, class RMR proposed by Bieniawski [72] and classification.

RQD/Jn, Jr/Ja, Jw/SRF Ratios of the Q system parameters.

logQ, logQ' Base 10 logarithm of Q and Q’.

GSI Geological Strength Index [73].

N Altered form of the Q index (Q' = RQD/Jn*Jr/Ja*Jw).

RCR Altered form of RMR (RCR = P2+P3+P4+P5+P6).

φ’, c’, E Friction angle, cohesion and deformability modulus.

E (GPa) - LFJ

N Mean 95% confidence interval for mean Std. deviation

160 36.9 35.9-37.8 6.1

E (GPa) - calculated

N Mean 95% confidence interval for mean Std. deviation

76 38.5 34.5-42.5 17.6
Table 2: Comparison between calculated and measured values of E.

Table 1: Name and description of the attributes in the database.

( ) 5 3.23883 10E GPa RMR−= × ×

0.25 2ln 2.622 0.2594 0.1185 0.00058E Q RMR RMR= − + × + × − ×
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When only parameters related to the joints are available (P3, P4 and 
P6), which are also important parameters in the prediction of E, the 
procedure that leads to better results is first to calculate the RMR with 
a model based on these parameters [49] and second, using equation 1, 
to calculate the final value of E. Table 3 presents the results for these 
two methods. In both cases, there are no confidence intervals because 
the results were based on a simple correlation procedure using all data.

The correlation has the advantage of avoiding the Q index 
evaluation. However, it does not have the statistical validation present 
in the previous, more complex model. For the last method, the 
decreasing accuracy is much more significant, especially for E values 
corresponding to poorer rock masses (ln(E)<1 or RMR<34).

Developed models for strength parameters

Strength parameters were not originally present in the database, but 
were indirectly derived from available information using established 
analytical methodologies. Concerning the strength parameters, the 
main goal was to develop models to predict the Mohr-Coulomb 
parameters using different types of data. To obtain the values of these 
parameters to include in the database, the Hoek and Brown (H-B) 
strength parameters were firstly computed. Then c' and φ’ were 
derived by fitting an average linear relationship to the generated 
failure envelope formulated in terms of effective stresses [73].

The prediction models for φ’ and c' were developed considering a 
reference depth (H) of 350 m (the average depth of the main caverns 
of the powerhouse complex) and a disturbance factor (D) of zero. To 
allow for a simple and direct transformation of the values predicted 
by the models for other conditions (different H and D), a parametric 
study was performed. Based on this study, a generic methodology for 

transforming the geomechanical parameters for a given H and D to a 
different pair of values was developed and then particularised for the 
DM models. The generic methodology is based on the application of 
two correction factors, one for each parameter, and is described in 
Miranda [49].

Figure 21 shows a plot of the most important parameters in the 
prediction of φ’. There is a large number of variables related to the 
prediction of this geomechanical parameter with several ones 
showing similar importance. However, the most important variables 
are: (i) UCS, which was expected because this value is also a strength 
measure, and (ii) the Q index (with logarithmic transformation) and 
other variables related to the Q system. This is unexpected because the 
Q system is normally used only for classification purposes and not for 
the calculation of strength parameters considering the rock mass as a 
continuum medium even though the Jr/Ja ratio is already considered 
a strength index for joints. Nevertheless, the Q index is very complete 
and can be used for the prediction of geomechanical parameters [71].

In this context, several sets of parameters were tested to obtain the 
best prediction models that could simplify the way φ’ is calculated. 
The input variable sets (IVS) which presented the best results were: i) 
IVS 1: all variables; ii) IVS 2: Q; log Q; Q’; log Q’; RMR; iii) IVS 3: all 
RMR parameters (P1, P2,…, P6); and iv) IVS 4: RMR parameters P1, 
P4 and P6.

Results for the different IVS are presented in Table 4. The expression 
for the regression model of IVS 4 is the following:

                                                                                                               

As expected, the models using IVS 1 were the most accurate. 
Nevertheless, the remaining models also had very good predictive 
performances. IVS 3, which uses all the RMR parameters, is only 
slightly outperformed by IVS 1. The error measures and R2 are very 
close. For a wide range of values, approximately from 35 to 63º, the 
prediction capacity is very uniform and reliable because the plotted 
values lie near the 45º line, even though a small accuracy reduction 
can be observed for the lower values of φ'. This range of values covers 
a great variety of possible weathering states of the granite rock mass 
from fresh rock to transition from rock to soil. IVS 2 presented the 
worst performance. In spite of using information from the RMR and 
Q coefficients, it was outperformed by the simpler models. For the case 
of φ', the use of specific information about rock mass characteristics 
presented better results than using overall quality indexes like the 
RMR and Q.

The most important RMR parameter was by far the one related to 
UCS, meaning that in granite rock masses, φ’ is closely related to this 
strength measure [12]. The variables related to joint conditions and 
orientation (P4 and P6, respectively) also appear to be good predictors. 
Even though a high importance of joint conditions was expected, the 
considerable weight of the parameter related to the joint orientation 
is not as acceptable. It can be due to limitations of the database or 
even of the RMR system itself which can overrate the importance 
of this parameter. Finally, IVS 4 uses these three parameters for the 
prediction of φ’ with very good results. Comparing with IVS 1 and 3, 
error measures are higher but the model has the advantage of being 
very simple because it uses only three parameters. Considering the 
MAD and RMSE values from Table 4, the mean expected error for 
these models is only about 1°, which can be considered negligible for 
engineering purposes.

Figure 20: Computed versus predicted ln(E) values for regression 
model with the RMR and Q parameters.

Correlation with RMR Correlation P3, P4, P6 – 
RMR – E

R2 MAD RMSE R2 MAD RMSE

Linear 0.962 2.357 3.156 0.930 3.120 4.138

Logarithmic 0.970 0.116 0.164 0.889 0.192 0.319
Table 3: Results for the models which use the RMR and only some 
parameters of this index.

1 4 6' 32.146 2.123 0.229 0.211P P Pϕ = + × + × + × (3)
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The ANN outperformed the regression models for IVS 1 to 3 in 
terms of the RMSE and this is especially true for IVS 1, where the 
error was reduced by more than 30%. For IVS4, the RMSE of the 
ANN is 87% higher than the RMSE for the regression model. The 
ANN performs worst when using fewer parameters. Nevertheless, the 
RMSE of all the trained ANN were acceptable for every considered 
model, which means that they are highly accurate in the prediction 
of φ’.

tan (φ’) was also considered a target variable because of its physical 
meaning. The preliminary runs pointed to the significant importance 
of the GSI, which is normal because φ’ is indirectly dependent on this 
parameter. Moreover, the RMR parameters, mainly the one related to 
UCS (P1) and some parameters related to discontinuities (P4 and P6) 
were significantly important. Table 5 present the overall performance 
of both models.

The results are very similar to those obtained for φ’ with the same 
sets of parameters. When using all RMR parameters, the value of φ’ 
can be estimated with acceptable accuracy even though there is a 
slight loss of accuracy for lower values compared to the remaining 
range. As expected, the consideration of only the three most 
important parameters increases the mean errors, but the models have 
the advantage of being simpler. In both cases, and considering only 
the RMSE, the multiple regression models outperformed the ANN 
in the prediction of the target variable. Also a correlation between 
tan(φ’) and E was found:

                                                                                                                   
The correlation presents the intrinsic interest of allowing 

the evaluation of a strength parameter from an estimation of a 
deformability parameter and vice-versa.

Finally, models for cohesion (c’) prediction were developed and the 
obtained results are detailed in the publications [12,49].

Figure 22: Location map at 4850 level [53].

Figure 21: Importance of the attributes for the φ’ prediction [12].

IVS Regression ANN
R2 MAD RMSE RMSE

P1-P6 0.976±0.003 0.025±0.015 0.046±0.013 0.057±0.006
P1, P4, P6 0.953±0.008 0.045±0.014 0.062±0.015 0.070±0.006

Table 5: Results for the models developed for tan(φ’) prediction.

tan ' 0.772 0.287 ln Eϕ = + ×

N. Regression ANN
R2 MAD RMSE RMSE

1 0.968±0.004 0.521±0.020 1.002±0.106 0.672±0.195
2 0.869±0.012 1.162±0.043 2.019±0.154 1.970±0.502
3 0.965±0.001 0.600±0.021 1.051±0.068 0.807±0.092
4 0.952±0.002 0.776±0.019 1.226±0.071 2.290±0.303

Table 4: Results for the models using the different IVS for φ’ prediction.

 (4)
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Underground Laboratory

DM studies were performed for DUSEL, located in South Dakota, 
USA [59,80], (Figure 10). Detailed geological and geomechanical 
studies were performed at 4850 Level (about 1,470 m deep) and at 
7400 Level (about 2,240 m deep) [51,53,81].

A mapping program for the 4850 Level was conducted by LFA 
[81], and this focused on a triangle of drifts and included a total 
of 1,300 m of detailed mapping (Figure 22). Site mapping focused 
on the detailed evaluation of the existing excavations, geological 
structure (discontinuities, foliation planes, shear zones, inflows, 
etc.), hydrogeology (water seepage), and rock alteration. Initially, 
approximately 1,820 m of drifts were proposed to be mapped. At 
the initiation of the mapping, it was decided that increased detail 
was needed and, therefore, the focus shifted to the primary area of 
interest, which is the triangle of drifts between the Ross and Yates 
Shafts up to the Yates and Poorman contact in both drifts. Based on 
the manually collected data, a geotechnical evaluation was conducted 
to delineate the dominant discontinuity sets within the drifts and to 
further characterize the rock mass. The data collected were also used 
in calculation of RMR and Q values along the drifts that were mapped. 
GSI values were estimated regularly based on structure and surface 
conditions of the rock mass. Initially the rock mass was subdivided 
on 11 structural domains. However, taking into consideration all the 
information included in the report of LFA, the database gathered is 
mainly composed by the weights of the RMR and Q empirical systems 
application and the GSI values in a total of 127 cases gathered in the 
different domains. Figure 23 shows attributes used in the database.

This work was related to the development of new models based on 
DM techniques to predict the values of RMR, Q and GSI with less 
information than the original formulations in which the evaluation 
of several parameters was necessary. These models can be helpful 
in geomechanical characterization conditions where information is 
scarce, uncertain or difficult and expensive to obtain. In this sense, 
these models were especially well suited in the preliminary stages of 
design.

For each index, the study starts with the computation of the 
parameters with main influence in their prediction. Then, the models 
are developed using only the minimum amount of input parameters 
that lead to acceptable results from an engineering perspective. The 
DM algorithms used in this study were the MR, ANN, and SVM. 
Only the MR provides an equation relating the output and the input 
variables. The MR is similar to the simple regression with the main 
difference being the number of independent variables involved. The 
simple regression involves only one independent variable whereas 
the MR involves several independent variables and establishes a 
relationship among them and the dependent variable. The ANN uses 
a human brain like structure composed of simple processing units, 
denominated nodes or artificial neurons, with a large number of 
interconnections. The multilayer perceptron architecture was adopted 
in this work [82]. The SVM was originally used in classification 
problems [83]. The basic idea was to separate two classes of objects 
using a set of functions. This process is called mapping and the 
functions are known as kernels. The planes that separate the classes 
are known as hyperplanes and there is an optimization iterative 
algorithm to find the hyperplane which establishes the largest 

Figure 23: RMR, Q and GSI attributes in data base.
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separation between classes. The vectors placed at the nearest distance 
in both sides of the hyperplane are denoted support vectors. Both in 
classification and regression methods there is an error function to 
minimize subjected to some constraints.

The modeling software used was the R program [84] together with the 
RMiner [85] package that allows one to apply the DM algorithms and 
to evaluate their performance under a different set of metrics. In this 
work the metrics MAD and RMSE were used. To evaluate the algorithm 
performance, a cross-validation [86] was applied. In this method the 
examples are divided into 5 subsets with approximately equal number 
of records. Ten runs are performed using 4/5 of the records for training 
and 1/5 for testing rotating the subsets using for training and testing. 
The final metrics are the mean of the metrics obtained in the 10 runs.

The relative importance of each input parameter was also evaluated 
by applying a sensitivity analysis [87]. This is carried out after the 
training phase and is intended to evaluate the response of the model 
when the input parameters are changed. The importance of a given 
input parameter is evaluated by changing its value from a minimum 
to a maximum and at same time maintaining the remaining input 
parameters at their mean values.

It was concluded that the most important parameters in the 
prediction of RMR were the weights related with the RQD, joint 
spacing and underground water for every DM algorithm (P2, P3 and 
P5) [59]. Very accurate models were obtained using only these three 
parameters and even with only the two most important ones (P2 and 
P3). For the GSI index it was observed that the models should consider 
at least the three most important input parameters. Similarly to RMR, 
it was possible to use models for the prediction of the Q index using 
only two or three parameters and maintaining a high predictive 
accuracy [59]. The metrics for the RMR and Q indexes with two and 
three parameters are presented in Table 6. With exception of GSI, in 
every model a good distribution of the values around the 45° slope 
line between predicted and real values could be observed.

The application of DM intelligent methods consists of search and 
inference of patterns or models. BNs are another possibility that 
allows one to introduce uncertainties related to the geotechnical and

construction aspects, risk management and decision making during 
construction. Several BNs were learned and tested on the database, 
using the software GeNIe. In this specific study, only models that 
allow predicting RMR values were developed. They were trained with 
about 4/5 of the cases and tested on 25 different cases. The algorithm 
used for learning the models was the “greedy thick thinning” with a 
uniform prior [88].

Figure 24 shows the structure of learned BN models obtained using 
five parameters (P1, P2, P3, P4 and P5), three parameters (P2, P3 and P5) 
and two parameters (P2 and P3). The learned networks were tested 
on cases from the database and results are shown on Table 7. Table 
7 shows that when training and testing the models (the model fit), 
the best results were reached with the BN with 2 parameters where 
only P2 and P3 are used. This model assumes that, not only P2 and P3 
are important in predicting RMR but that also the interrelationship 
between P2 and P3 (represented by the arrow) is an important element 
of the prediction.

In the user interface GeNIe, it is also possible to calculate the 
strength of influence per arc, and represent this visually in the network. 
The strength of influence is determined by looking at the posterior

System Algorithms 2 input parameters 3 input parameters
MAD RMSE MAD RMSE

RMR MR 1.248 1.543 1.137 1.598
ANN 1.317 1.833 1.330 2.279
SVM 1.584 2.384 1.168 1.828

Q MR 0.031 0.054 0.020 0.028
ANN 0.031 0.065 0.003 0.008
SVM 0.040 0.106 0.009 0.029

Table 6: Metrics for predictive models for RMR and Q indexes.

Figure 24: BN developed and their strength of influence.

BN Models Accuracy (%)

Naïve BN with 5 parameters 68

BN with 3 parameters 72

BN with 2 parameters 76
Table 7: Accuracy results for predictive BN models.
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probability distribution of a node, for each possible state of the parent 
or child node, depending on the type of connection, and calculation 
the distance all the differences between the conditional probability 
of a node given the parent node, and the a-priori probability of the 
node [89]. The strengths for the BN models are also shown in Figure 
24. These strengths were calculated using the Hellinger distance [59]. 
Figure 24 shows that many of the correlations between the different 
variables show thick arcs, indicating they are strongly determined 
by the value of their parent nodes, i.e. a strong influence between 
variables. The strongest influences are between RMR and P3, RMR 
and P2 and P2 and P3.

Occurrence of Rockbursts

Rockburst events – laboratory experiments

There are several effective design methods available to deal with 
ground fall in mining. However, this is not the case for rockbursting 
and seismicity-related mine design problems. Modeling analyses are 

a fundamental tool to assess potential undesirable events and its cost 
is only a small fraction of the potential consequences to excavation 
operations. A large variety of numerical analysis methods can and 
have been applied to underground engineering in order to assess 
the potential for the occurrence of rockburst. Monitoring of seismic 
events and visualization techniques in deep tunnels and mining 
activities are very useful tools for predicting potentially hazardous 
situations in order to assist the construction in time. Rockburst is a 
type of event that can range from minor to significant volumes of rock 
falling or being ejected with high energy, which can have devastating 
consequences. These phenomena are commonly reported in deep 
underground mining structures, but can also occur in deep tunnels, 
such as the Jinping II hydroelectric scheme (Figure 5). A rockburst 
triaxial experimental system is important in predicting these types of 
events both in mining and in other deep underground projects, and 
previous analysis of rockburst test results have allowed the authors to 
develop predictive models to estimate rockburst maximum stress and 
a risk index [90-92].

Figure 26: Rockburst test system.

Figure 25: Influence diagram of rockburst [9].
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Rockburst is affected by different factors [9,92]. Figure 25 shows the 
influence diagram listing the factors that affected the probability of 
a rockburst as well as its potential consequences. These influence 
diagrams are very important in the design of DM models.

DM techniques were applied successfully to a rockburst laboratory 
test database obtained from tests at SKL-GDUE, China [90]. The 
developed triaxial rock test machine for modelling the rockburst is 
presented in Figure 26 [90-91]. The equipment is a true triaxial testing 
scheme. During the test, one surface of the specimen can be unloaded 
immediately from the true triaxial compression condition, simulating 
the stress condition of the rock mass at the free excavation boundary 
in underground excavations. It is a system for rockburst testing that 
includes the main machine, hydraulic pressure controlling unit and 
data acquisition for forces, displacements, acoustic emission (AE) and 
high speed digital recording. Normally, in the tests acoustic polarity 
transducers are used with a resonance frequency of about 150 kHz and 
a fairly flat response from 100-300 kHz [26,91]. The stress paths used 
by the testing system simulate the different types of rockburst that can 
occur. The AE characteristics are very important and can be used and 
analysed in order to understand crack propagation phenomena.

A database of 139 cases with samples from different rock types 
and from China, Italy, Canada and Iran was compiled. Two indices 
were developed and used, the rockburst maximum stress (σRB) and 
rockburst risk index (IRB). The meaning of these indices are described 

in detail in He et al. [91]. DM techniques were applied to the rockburst 
database to infer prediction models of the indices σRB and IRB. New 
models were established using the algorithms MR, ANN and SVM. 
Table 8 shows information for each field. The samples had a prismatic 
shape with an average length of 59 mm, with a minimum of 39 mm 
and a maximum of 111 mm. The volume had 312 cm3 in average.

All the tests were of the strainburst type. The rockburst critical 
depth He was calculated assuming a simplified circular shape in the 
crown of the tunnel, a concentration factor for the stresses equal to 
2 and a specific weight of 27 kN/m3 for the overburden rock mass by 
the expression:

                                                                                                                (5)

where σRB is the rockburst maximum stress obtained in the tests.

A rockburst risk index IRB was also calculated following the formula:

                                                                                                                (6)

The rupture stresses σRB obtained in the tests have an average value 
for all samples of 82.6 MPa, with a minimum of 16.5 MPa for mudstone 
and a maximum of 161.4 MPa for granite. The average value of coal 
was equal to 19.0 MPa and for sandstone 101.4 MPa. Figure 27 shows 
the distribution of the rockburst stresses obtained in all samples. A  

Field Topics

Location of the test Location sample; depth (m); country; date. 

Dimensions of sample Code, length; width; height (mm); volume (cm3)

Rock material Type of rock; RQD; UCS (MPa); Specific weight (g/cm3); E (GPa) Elastic modulus; ν – Poisson ratio. 

Main minerals and cracks % clay; % feldspar; % calcite; % carbon; Existence of cracks

Stresses before loading (MPa) σv – vertical in situ stress; σh1 –horizontal in situ stress; σh2 – horizontal in situ stress in the face to be unloaded; 
I1 (first invariant of the stresses); I2 (second invariant of the stresses); I3 (third invariant of the stresses).

Stresses during tests (MPa) Rockburst maximum stress (σRB); maximum stress axis; loading rate in MPa/s; unloading rate for vertical 
stresses  in MPa/s; unloading times.

Characteristics of rockburst test Type of burst position; duration of the test in minutes; time of burst delay (minutes); mainly shape of fragments.

Critical depth (m) Critical depth; rockburst risk index.

Figure 27: Histogram with the distribution of the rockburst maximum stress σRB.

Table 8: Fields considered in the database.

18.52e RBH σ=

0.054RB
e RB

H HI
H σ

= =
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large number of samples for soft rocks with values lower than 40 MPa 
were observed. The distribution for the classes for all tests and for the 
most representative rock formations (coal, granite and sandstone) 
are shown in Table 9 for the index IRB. Low IRB values were obtained 
in 56% of the samples, and very high values were 13% of the total. 
Figure 28 represents the relation between IRB and σRB. A logarithmic 
relation between IRB and K (ratio between average horizontal stresses 
and vertical stress due to overburden) was obtained [91].

In Table 10 four data groups were considered as input parameters 
for modeling and evaluation of both indexes. The DM algorithms 
used were also MR, ANN and SVM.

The results of σRB for group G1, with the principal variables, show 
good performances for all the developed models with error measures 
fluctuating approximately between 20 and 32 MPa for a variable that 
ranges from 10.6 MPa to 255.5 MPa (with a mean value of 82.6 MPa). 
Also the values of the correlation coefficient are rather near 0.9. All 
the models present similar results. However the model based on the 
SVM slightly outperforms the others.

The most important parameters in the prediction of σRB are UCS 
and σh1, followed by depth and σv and finally by E and σh2 with relative 
importance levels below 10%. Figure 29 presents the importance of 
the variables for the SVM method. Equation 7 shows the relationship 
of the σRB model obtained by MR algorithm:

                                                                                                               (7)
                                                                                                       
Considering the subordinate set of input parameters (group G2) the 

results slightly improve and the SVM model continues to have the 
best performance. In terms of importance, the main parameters are 
almost the same as in the previous case, namely UCS and σh1, followed 
by depth, σv and Q.

Value of IRB Classification

IRB <0.6 Low

0.6<IRB≤1.2 Moderate

1.2< IRB≤2.0 High

IRB ≥2.0 Very High
Table 9: Classification in accordance with the rockburst index.

Parameter Symbol σRB IRB

G1 G2 G3 G4

Depth (m) H Y Y Y Y
Unixial Compressive Strength (MPa) UCS Y Y Y Y
Deformability modulus (GPa) E Y Y Y Y
Horizontal in situ stress (loading face) (MPa) σh1 Y Y - -
Horizontal in situ stress (unloading face) (MPa) σh2 Y Y - -
Vertical stress due to overburden σv Y Y - -
Percentage of clay (%) Cl - Y - -
Percentage of quartz (%) Q - Y - -
Percentage of feldspar (%) F - Y - -
Percentage of calcite (%) Ca - Y - -
Percentage of carbon (%) Cb - Y - Y
Volume of the sample Vol - Y - -
Rockburst maximum stress (MPa) σRB - - Y Y
Ratio between average horizontal stresses and σv K - - Y Y

Table 10: Generated groups for evaluation of σRB and IRB.
Y – Yes; - – No; G1- Group 1; G2- Group 2; G3- Group 3; G4- Group 4.

Figure 28: Distribution of IRB vs.σRB.

1 2

9.132 0.013 0.381
0.364 1.211 0.069 0.365
RB
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σ σ σ
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The DM techniques were applied to infer prediction models of the 
rockburst index IRB. For the Group G3 and considering all the tests, the 
model based on the ANN presents excellent results. The SVM model 
also gives good results, and the MR model showed the least accurate 
results. The relation between the input variables and the index IRB is 
highly non-linear which explains the excellent prediction of the ANN 
model. The most important variables are the depth and σRB followed 
by E, K and UCS. Equation 8 shows the obtained IRB relationship 
using MR algorithm for group G3.

                                                                                                                (8)

Considering additional secondary variables, as was done for group 
G4, the same trends are observed in terms of the performance of the 
models. The most important variables are also H and σRB, followed 
by volume of the samples, Vol, and UCS and K. With reference to 
group G3 the performance of the models is quite different. The MR 
model presents the worst performance with considerably high error 
values, between 0.458 and 0.602 for a parameter with a mean value of 
0.954 and ranging from 0.046 and 5.207. On the other hand, the ANN 
model presents excellent results shown by very low error values and 
an R coefficient very near to one. The SVM model also presents good 
results but it is clearly outperformed by the ANN model. For group 
G4, that considers also a secondary set of parameters, the results are 
similar to the previous case, although a slight decrease in the model’s 
performance is observed. In fact, the input parameters that were 
added to the process could not improve the model’s performance due 
to their low importance in relation to IRB. The only exception is the 
input parameter Vol.

In situ rockburst database and DM

In situ cases of rockburst that occurred during tunnel construction/
mining were collected from field studies at Jinping II, technical 
literature, publications and reports, and organized into a database. The 
rockburst cases were classified according to geometric characteristics, 
causes and consequences. DM techniques were then applied to the 
database with the aim of developing rockburst predictive models [92-
93]. In order to understand the circumstances in which rockbursts 
occur, their magnitude, as well as the different consequences of 
rockburst, the authors gathered as much information as possible that 
could provide relevant information regarding the occurrence of the 
rockburst. For this, a form was created which included eight fields 
(each with one or more variables): (1) Occurrence of rockburst; (2) 
Method of construction; (3) Geometry of the tunnel; (4) Strength 
of the rock; (5) In situ state of stress; (6) Dimensions and location 
of the rockburst; (7) Severity and delay time; and (8) Damage in the 
tunnel. The database contains 60 cases, which is a relatively small 
number. However, we believe it constitutes a fundamental first step 
in order to create more complex models in the future. One important 
feature of the database is that most of the collected rockburst cases 
(91%) occurred during the construction of Jinping II. However, it 
should be stressed that the majority of rockbursts take place in deep 
underground mines. The collected data is confined to D&B and TBM 
excavation methods, and the shape of the tunnels where the rockburst 
cases occurred were circular (67%) and horseshoe (33%).

Different levels of rockburst were classified in accordance to Table 
11, following the existing experience at the Jinping II hydroelectric 
scheme in China [4,10,41]. Figure 30 gives the distribution of cases 
in the database by rockburst type. In the figure overbreak situation 
corresponds to levels C and D.

4 41.432 8.035 10 8.429 10
0.009 0.007 0.074
RB

RB

I H UCS
E Kσ

− −= + ⋅ ⋅ − ⋅ ⋅
− ⋅ − ⋅ − ⋅

Rockburst level A B C D

Description Slight Moderate Strong Very strong

Duration Sporadic explosion Long duration Fast Sudden

Block depth (m) <0.5 0.5-1.0 1.0-2.0 >2.0

Impact in excavation Small Certain impact Reasonable impact Large Impact
Table 11: Classification of rockburst.

Figure 29: Importance of variables for predicting σRB using the SVM model.
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Figure 32: BN classifiers.
(ACCIDENT TYPE: type of rockburst; TSUP: type of Support; K:K0; Deq: equivalent diameter of the tunnel; UCS: unconfined compressive 
strength; ORIENT: orientation)

Figure 31: Importance of variables according to ANN model.

Figure 30: Distribution of cases by rockburst type.
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Several DM techniques (DT, K-Nearest Neighbors, ANN and 
SVM) were applied to the database with the aim of developing 
rockburst predictive models. The R environment and rminer package 
developed by Cortez [84-85] were used for the implementation all 
DM techniques. For the prediction of in situ rockburst type a set of 
nine variables were considered, namely: L - Length of occurrence 
(m); TESC - Type of excavation; TSUP- Type of support; UCS - UCS 
(MPa); E - E (GPa); K - K0; FORM - Shape of tunnel; Deq - Equivalent 
diameter (m); Req - Equivalent radius (m).

The aim of the analysis was to develop models that would allow 
one to predict the type of rockburst given certain conditions and 
characteristics related to the underground work. For validation 
purposes a leave-one-out approach [94] was applied under 20 runs. 
For models evaluation and comparison, we used three classification 
metrics based on a confusion matrix [66].

Another outcome of the application of the DM techniques is the 
possibility of obtaining the importance of each of the model variables 
through sensitivity analysis [18]. According to the ANN model, the 
relevant variables are K, TSUP and L, with a total influence around 
57% (Figure 31).

BN were also applied to the database [9,66]. The techniques used 
included Naïve Bayes Classifier, which are simple probabilistic 
classifiers based on Bayes Theorem, a particular class of BN with 
assumed independence between predictors; tree augmented Naïve 
Bayes Classifier, an extension of Naïve Bayes, where each attribute 
variable will have on parent variable between the other attributes, 
and Augmented Naïve Bayes (ANB), a semi-naïve structure. Several 
sensitivity studies were performed to determine the most influent 
variables in the prediction of rockburst type, which were found to 
be: (i) Support Type; (ii) K0; (iii) UCS; (iv) Deq; (v) Orientation 
(only for the Naïve Bayes and the TAN models; ORIENT means the 
orientation of the burst in the periphery of the excavation). The “best” 
BN classifiers are indicated in Figure 32.

The results of the different models were validated using 5-fold 
cross-validation method [94]. It was observed that the application of 
the TAN classifier results in a slighter improved classification then 
the other two models. This is expected as TAN has normally a better 
classification performance than standard Naïve Bayes. Naïve Bayes 
networks are a very simple representation of a problem, which can 
be an advantage, however the independence assumption, which is 
made in these models is many times incorrect and unrealistic. TAN 
are improved versions of Naïve Bayes networks which consider 
dependence between attributes in the models, which is normally more 
realistic than Naïve Bayes. The downside is that the process of adding 
dependencies between variables to capture correlations between the 
attributes, increases the computational complexity.

Confusion matrixes for the Bayes Naïve model and for the TAN (the 
lowest and highest accuracy of the “best” models) were calculated. 
It was observed that the Naïve Bayes model classifies all cases of 
Overbreak correctly. It also classifies 83% of Strong Rockburst correctly 
and 75% and 87.5% of the Moderate and Slight overbreaks correctly, 
respectively. The TAN model performs slightly better, classifying 
Overbreaks and Strong rockburst correctly on all cases. However the 
model, as with the Naïve Bayes model, cannot accurately classify all 
moderate and slight rockbursts, classifying correctly only 80% and 
87.5% of these cases, respectively. This may be explained by the small 
number of cases in these two categories. In the future, extending 
the database will help improve the overall accuracy of the models.

Conclusion

The use of underground space for engineering systems has been 
increasing worldwide. Underground geoengineering is characterized 
by complex, uncertain geology and geomechanics that present 
challenges that require new techniques to be dealt with. Artificial 
Intelligence (AI) techniques provide a means to deal with these ever 
more complex and large data that are generated from the design and 
construction of these systems.

In this advanced review paper, the application of Data Mining 
(DM) techniques to deep underground engineering problems was 
discussed, and case studies were presented that illustrate the use of 
these techniques. Specifically, DM techniques used in the evaluation 
of geomechanical properties parameters in a large underground 
hydroelectric scheme, a very deep underground research laboratory, 
and to the prediction of rockbursts were illustrated. The models 
developed showed good accuracy with reality, and have the advantage 
to allow one to identify the importance of various parameters, as 
well as, in the case of BN classifiers, the relationship between these 
variables. The wide range of case studies shows, the importance that 
such AI techniques can play in future underground engineering 
problems. Novel studies are being developed to identify new strength 
criteria for rock mass in order to meet the demand of the scientific 
rock mechanics community.
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