Sr-90 Deposition Observed in Central and Northeast Honshu Island, Japan, after the Fukushima Dai-ichi Nuclear Power Plant Accident

Katsumi Hirose

Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo 102-8554, Japan

Abstract

Monthly depositions of anthropogenic radionuclides, which directly reflect atmospheric processes including emission from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), are an important probe to re-construct FDNPP accident sequence. Japanese radioactivity survey network monitored monthly 90Sr deposition after the FDNPP accident. The highest monthly 90Sr deposition (470±17 Bq m⁻²) was observed in March 2011 at Futaba near the FDNPP site, which is the same order of magnitude as that due to global fallout observed in 1963. The higher 90Sr deposition in March 2011 occurred in the Kanto and inland of the Tohoku areas. The monthly 90Sr deposition decreased with time, as did 137Cs. Atmospheric effect of the FDNPP-derived 90Sr continued more than 1 year. 90Sr/137Cs activity ratios in March 2011, which were in the range from 0.99 x 10⁻² to 3 x 10⁻², showed no large spatial variation. This result allowed us to estimate total atmospheric emission of 90Sr from the FDNPP accident from the total atmospheric release of 137Cs. The total release amount of 90Sr at an early stage of accident was calculated to be 2.7 – 3.6TBq.

Introduction

On 11 March 2011, the Richter scale 9.0 magnitude earthquake, so called "the 2011 Great East Japan Earthquake", and Tsunami struck the northeast coast of Japan, resulting in widespread injury and loss of life. These natural disasters caused severe accident in the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) [1]. As a result, large amounts of radionuclides have been released in the environment [1,2]. Japanese government, research institute and university have continuously monitored the FDNPP-derived radionuclides in the atmospheric samples [3-8]. Just after the FDNPP accident, 131I, 134Cs and 137Cs were detected as dominant FDNPP-derived radionuclides in atmospheric samples such as atmospheric dust and deposition, whereas refractory radionuclides such as 103Ru and 95Zr could not be detected [3-5]. In contrast to volatile radionuclides such as radiocesium, there is only limited information on atmospheric behaviors of FDNPP-derived radiotrastum (90Sr (half life: 50.53 d) and 137Cs (half life: 28.79 y)) [8] because radiotrastum was a minor release component due to un-volatile properties of oxide [9]. Total atmospheric emissions of 90Sr and 137Cs from the FDNPP accident were estimated to be about one and two orders of magnitude lower than 137Cs, respectively[1]. Although radiotrastum is a minor component within the FDNPP-derived radionuclides, knowledge on radiotrastum derived from the FDNPP is important to have better understanding of characteristics of the FDNPP accident.

The monthly 90Sr deposition have been monitored by Japanese Radioactivity Survey project since the late 1950s, in which major part has been performed by Meteorological Research Institute (MRI) [10-13]. After the FDNPP accident, the monthly 90Sr deposition observed at Tsukuba was reported [8], in which the monthly 90Sr deposition in March 2011 increased to 5.2 ±0.1 Bq m⁻¹, being more two orders magnitude greater than that in the late 2000s. However, there is no report about atmospheric dispersion of the FDNPP-derived 90Sr in Japan. Activity ratios of 90Sr and 137Cs are an important indicator to identify freshly released 90Sr using 137Cs with a short half-life. Although after the FDNPP accident 90Sr was detected in airborne dust (90Sr/137Cs: ~15) [8] and seawater ([90Sr/137Sr: 11.8±0.8] [14], there is very limited information on 90Sr in environmental samples because of complicated and time-consuming radiochemical procedure. Activity ratios of 90Sr to 137Cs are a useful tool to identify sources of radioactive releases and to have better understanding of environmental behaviors of these radionuclides [15,16]. The annual mean 90Sr/137Cs activity ratios of deposition samples in the period of 1980 to 1985 were a range from 0.43 to 0.77, which is due to radioactive fallout from the 26th Chinese atmospheric nuclear test conducted in October 1980 [17]. In May 1986 just after the Chernobyl accident, the 90Sr/137Cs ratio in a Tsukuba deposition sample decreased to 0.0094. The 90Sr/137Cs ratios in deposition samples varied in the 1990s and 2000s due to effects of resuspension and terrestrial processes [13,18,19]. In March 2011 just after the FDNPP accident, the marked low 90Sr/137Cs ratio (about 2x10⁻²) was observed in the deposition sample collected at Tsukuba [8]. To have better understanding of environmental behaviors of the FDNPP-derived radionuclides and the FDNPP accident sequence, therefore, it is important to examine the spatial and temporal variations of the 90Sr/137Cs ratios in deposition samples.

In this paper, we describe spatial distributions and temporal variation of the monthly 90Sr deposition observed in the central and eastern Honshu Island, Japan, after the FDNPP accident, and discuss total atmospheric emission of 90Sr from the FDNPP.

Sampling and Method

Monthly 90Sr deposition data recorded in Environmental Radioactivity database[20] were used for analysis of its temporal variation. Monthly radioactivity deposition samples have been collected at radioactivity monitoring stations by Meteorological Research Institute [11,20].

Keywords:
Fukushima, 90Sr, Deposition, Temporal variation, Radioactivity emission
Research Institute (MRI, Tsukuba) and local government laboratories. The monitoring stations in central and eastern regions in Japan (latitudinal range: 35°N – 40°N, longitudinal range: 138°E – 141°E, Figure 1) are as follows; Akita (39.72°N, 140.13°E), Morioka (39.68°N, 141.13°E), Yamagata (38.25°N, 140.33°E), Futaba (37.40°N, 140.99°E), Utsunomiya (36.60°N, 139.94°E), Hitachinaka (36.39°N, 140.43°E), Maeshi (36.40°N, 139.10°E), Tsukuba (36.1°N, 140.1°E), Tokyo (35.71°N, 139.70°E), Ichihara (35.53°N, 140.07°E), Chigasaki (35.33°N, 139.38°E), Shizuoka (35.00°N, 138.39°E), Kofu (35.67°N, 138.55°E), Nagano (36.64°N, 138.18°E), Niigata (37.85°N, 138.94°E), and Toyama (36.70°N, 137.10°E). Monthly deposition samples (rainwater and falling dust) were collected by rainwater samplers with surface areas of 0.5 m²(4 m² for MRI), which are usually installed on the roof of main monitoring building in each monitoring station. Monthly rainwater and falling dust samples was collected in appropriate bottles on the first day morning of every month.

We briefly describe the method of sample preparation and 90Sr measurements in detail described elsewhere [21]. 90Sr analysis has been performed by MRI and Japan Chemical Analysis Center (JCAC). Water sample was dried on a hot plate. The resultant residues were weighted after drying in an oven at 110°C and then transferred to a plastic container. Dried residue sample in a plastic container was subjected by gamma spectrometry. After the gamma survey, the deposition samples collected by local government laboratories were transported to JCAC. A part of the deposition sample was subjected to 90Sr measurements. The deposition samples were decomposed with conc. HNO₃ and H₂O₂, and dissolved in HNO₃ solution. To separate Sr fraction from other natural and anthropogenic beta-emitters, carbonate, oxalate, chromate and iron hydroxide precipitation techniques were performed successively, and the Sr fraction was finally purified by fumic HNO₃ technique or ion exchange technique basically according to MEXT manual [21,22]. After that, Sr was precipitated as carbonate and fixed on a 5C filter paper, which was subjected to beta counting. After the activity measurement sources were left for several weeks to achieve 90Sr-90Y radioequilibrium, their beta-activities were measured using a low-background 2π gas-flow counter (Tennelec LB5100) and determined with a calibration curve, which was made from a relationship between known amounts of 90Sr activity and SrCO₃. Counting efficiency (90Sr-90Y) was in a range of 50 to 70%. Chemical yield was determined from recovery of added stable Sr. In this case, treatment to remove contribution of 89Sr has been carried out [8]. The 90Sr activity was decay-corrected at mid-sampling. The detection limits of 90Sr were approximately 3.5 mBq m⁻² (MRI) and approximately 50 mBq m⁻² (JCAC), respectively.

Results and Discussion

The spatial distributions of monthly 90Sr deposition in March 2011 are depicted in Figure 1A. The monthly 90Sr deposition in the sites within 300 km apart from the FDNPP, which were in the range from 0.89 ±0.023 Bq m⁻² to 470 ±17 Bq m⁻², are more than one order of magnitude greater than pre-FDNPP accident level [8,13,23]. On the other hand, in contrast of 137Cs [5], 90Sr activities in some locations of Kofu (35.65°N, 138.57°E; inland site) and the Japan Sea side sites (Niigata: 37.91°E, 139.04°N and Akita: 39.72°E, 140.10°N) were less than the detection limit. The highest monthly 90Sr deposition was observed at Futaba about 5 km from the FDNPP, which is higher than the maximum monthly 90Sr deposition (170 Bq m⁻²) originating from the 1961-1962 large-scale atmospheric nuclear testing observed at Koenji (Tokyo) in 1963 [10-12]. The relatively high 90Sr depositions occurred at Hitachinaka and Tsukuba, corresponding to one of major...
pathway of the radioactive plume derived from the FDNPP accident [24]. The spatial distribution of the 90Sr deposition in March 2011 roughly corresponded to high 137Cs deposition area depicted by aerial monitoring [1]. These findings suggest that 90Sr detected in the deposition samples collected in March 2011 is derived from the atmospheric emission due to the FDNPP accident, which is supported detection of 90Sr (half life: 50.53 d) in aerosol samples [8]. In April 2011 as shown in Figure 1B, a region detected 90Sr in deposition samples spread to coastal zone of the central Honshu-Island and coastal sites in the Japan Sea, although the monthly 90Sr depositions in the sites detected in March 2011 decreased. The temporal change of the affected area, where the FDNPP-derived 90Sr was observed, is similar to that of 137Cs [5]. In May 2011 (Figure 1C), the monthly 90Sr deposition in all sites decreased. The spatial distribution of the 90Sr deposition suggests that the atmospheric deposition of the FDNPP-derived 90Sr cannot result in marked enhance of 90Sr deposition density in land surface except area adjacent to the FDNPP. Measurements of 90Sr in soil revealed that a small increase of 90Sr was observed in the exclusion zone near the FDNPP, in which an average 90Sr concentration in surface soil was 17.5 Bq kg⁻¹ with a range from 1.4 to 80.8 Bq kg⁻¹ whereas out of the exclusion zone there was no significant increase of soil 90Sr having an average 90Sr of 4.6 Bq kg⁻¹ with a range from 1.6 to 20.6 Bq kg⁻¹, which is the same level as that in the pre-FDNPP era [25,26].

In order to elucidate depositional behaviors of the Fukushima-derived radionuclides, it is important to examine the temporal change of the monthly 90Sr deposition. Temporal variations of the monthly 90Sr depositions during the period from March 2011 to March 2012 are shown in Figure 2. The monthly 137Cs deposition except Morioka exhibited decrease tendency during the period of March to May. We calculated apparent atmospheric half-lives (AAHL) of the Fukushima-derived 90Sr (Table 1). The AAHLs at Futaba and Yamagata are similar to that of the FDNPP-derived 137Cs during the corresponding period [5], whereas the AAHLs in the Kanto plain (19-44 days) are longer than that of the FDNPP-derived 137Cs. This finding suggests that the atmospheric behavior and/or emission processes of the FDNPP-derived 90Sr were different from 137Cs. After June 2011, the level of the monthly 90Sr deposition except several sites decreased to less than detection limit. However, the monthly 90Sr deposition at Futaba near the FDNPP with a range of 0.27 to 2.2 Bq m⁻² showed no decrease until March 2012. The monthly 90Sr deposition at Hitachinaka about 100 km south the FDNPP were measurable until November 2011, although 90Sr was detected in several samples collected in 2012. For Tsukuba, the monthly 90Sr deposition decreased until July 2011 and was kept at a constant level (0.01 to 0.077Bq m⁻²), which is about one order of magnitude larger than the pre-FDNPP level (2009-2010: ND to 0.0077Bq m⁻²). These findings suggest that the FDNPP-derived 90Sr at least affected in atmosphere of the Kanto plain until early 2012, although its radiological contribution was very small.

90Sr/137Cs activity ratios in deposition samples are an effective tool to have better understanding of emission and resuspension processes of the FDNPP-derived radionuclides. [13,18,19]. We examine the spatial distribution of the 90Sr/137Cs ratios in the deposition samples collected in March 2011. The result is shown in Figure 3. The 90Sr/137Cs ratios, which ranged from 0.88 × 10⁻⁴ to 3.5 × 10⁻⁴ with a median of 1.8 × 10⁻⁴, are approximately constant spatially. These ratios are similar with the 90Sr/137Cs ratios in soil of the exclusion zone with a range from 0.57 × 10⁻⁴ to 3.0 × 10⁻⁴ although 90Sr in soil contained contribution of 90Sr derived from global fallout [25,27]. The median of the 90Sr/137Cs ratio in the deposition samples reflects that in the major radioactive emission into atmosphere just after the FDNPP accident. This finding allows us to estimate the atmospheric total 90Sr emission from total 137Cs release. Many researchers have estimated the total atmospheric release of 137Cs derived from the FDNPP accident because of one of major emission radionuclides and its long physical and environmental half-lives, which has been summarized in several reviews [1,2,28]. Aoyama et al. [29] concluded that the most reliable value of the total atmospheric 137Cs release is 15 – 20 PBq. The total atmospheric 90Sr emission is calculated to be 2.7 – 3.6 TBoq from the median of the 90Sr/137Cs activity ratios and the total atmospheric 137Cs release, which corresponds to 0.00052-0.00069 % of the total core inventory (5.22 × 10⁶PBq). This estimated total atmospheric emission of 90Sr is more than one order of magnitude lower than the previous estimate (139Tbq)[1].

Citation: Hirose K (2017) 90Sr Deposition Observed in Central and Northeast Honshu Island, Japan, after the Fukushima Dai-ichi Nuclear Power Plant Accident. IJEEs, an open access journal. Volume 2. 2017. 134
The temporal variations of the 90Sr/137Cs activity ratios in deposition samples collected at Futaba, Hitachinaka, Tsukuba, Utsunomiya and Yamagata are shown in Figure 4. The 90Sr/137Cs ratios at Futaba near the FDNPP showed around 2×10^{-4}, although relatively high and low ratios occurred on August – October 2011 and on January – March 2012, respectively. The 90Sr/137Cs ratios at Hitachinaka, Tsukuba and Utsunomiya, corresponding to the Kanto area, increased from April to June 2011 and have exhibited high values of 0.00055 – 0.013 after April 2011, although its large temporal and spatial variations were observed. The 90Sr/137Cs ratios at Yamagata northwest of the FDNPP increased after May 2011. These findings suggest that atmospheric emission processes and dispersion behaviors of 90Sr and 137Cs after April 2011 differed from the initial release in March 2011. To explain long-term atmospheric effects of the FDNPP-derived radionuclides, resuspension hypothesis that 90Sr and 137Cs in deposition were supported by local suspension of surface soil particles has been proposed [6,30,31]. However, it is difficult to explain long-term variations of the 90Sr/137Cs ratios in the deposition by this hypothesis because 90Sr and 137Cs in local soil are too low to support their deposition levels [6]. One of other possible processes is atmospheric emission from highly contaminated area including the FDNPP [7]. The relatively high 90Sr concentrations (up to 1 kBq kg$^{-1}$) were observed in surface soil near the FDNPP collected in the period of December 2011 to July 2012, which correspond to higher 90Sr/137Cs ratios in the major emission [32]. The post accident sporadic release of radionuclides may be contained more enriched 90Sr than in the initial release because TEPCO implemented selective removal of radioesium in contaminated water at the first stage. In fact, one major sporadic release of radionuclides as a late emission was observed on August 19, 2013, in which higher 90Sr contamination and higher 90Sr/137Cs ratio (0.04) in a soil sample corresponding to the simulated plume line [33]. However, factors controlling the complicated temporal variations of the 90Sr/137Cs activity ratios are still unknown as mentioned by Igarashi et al. [8].

Conclusion

We summarized monitoring results of radiostrontium after the Fukushima Daiichi Nuclear Power Plant accident. Radiostrontium (90Sr and 89Sr) was released in the atmosphere due to the FDNPP accident. Since the maximum deposition on March 2011 just after the FDNPP accident, the monthly 90Sr deposition in the sites decreased with time. The late effects of 90Sr in deposition continued more than one year, although the area affected by 90Sr is limited comparing with 137Cs. For the initial emission in March 2011, the 90Sr/137Cs activity ratios in deposition samples with a median of 1.8×10^{-4} were approximately constant. The total atmospheric emission of 90Sr is estimated to be 2.7 – 3.6 TBq from the 90Sr/137Cs ratio and the total release amount of 137Cs. The 90Sr/137Cs activity ratios in deposition samples showed large spatial and temporal variability, which reflects complicated atmospheric behaviors of 90Sr and 137Cs including post-accident sporadic releases from the FDNPP site.

Competing Interests

The author declares no financial competing interest.

Acknowledgement

Author would appreciate staff members of the Prefectural Governments in Japan, JCAC and MRI for great efforts on measurements of radioactivity in deposition samples.

References

20. NRA (Nuclear Regulation Authority) (2016) Environmental radioactivity
16. Lee MH, Lee CW (2000) Association of fallout-derived 137Cs, 90Sr and