
Abstract
Earthquake prediction is usually dealt with in one of two ways: the prediction of the effects of a postulated 
earthquake on a specific site or the prediction of the occurrence of events. The first approach is today 
well developed and should always be instrumental for the design and implementation of construction 
codes and for general planning. Event forecasting still is regarded as a scientific curiosity without much 
practical application, namely where it still must prove to be useful: for the protection of human lives and 
property. This is the core question: can this type of forecast be useful? In the present work an application 
of earthquake forecasting is proposed that is similar in form to weather probability forecasting and 
should be made available both to the authorities and to the public. In the present context, the question 
that must be answered is: can this type of forecast be useful (in the above sense of helping to protect lives 
and property)? The prediction of another type of chaotic phenomenon has entered our lives for decades - 
weather forecasts - and perhaps we can draw lessons from its application. The sociological argument that 
earthquake forecasting can cause widespread panic has been surpassed by meteorology and climatology. 
A similar approach to earthquake forecasting is proposed here: the existing methods should be integrated 
in the periodical publication of seismic probability maps. This will have two beneficial effects: to get 
the  general public acquainted with earthquake forecasting, its successes and failures, and, at the same 
time, helping to  divulge a much needed culture of safety and preparedness; to the authorities, since 
civil protection resources are always scarce, the knowledge of an increased probability of an earthquake 
occurrence could help cluster some of those resources on the most threatened areas during the highest 
probability windows.
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Introduction 
  Most of the times, nature is unfriendly to us. Many times, nature 
seems to be really vindictive, humbling us with her power. The 
epitome of natural disaster is the earthquake, which can achieve a 
rate of released energy per unit time that surpasses any man-made or 
natural phenomenon with the exception of lightning. 

  All scientific and technological work is motivated by one of three 
pulsions: to exploit, to control or to predict nature. 

 The exploration of tectonic energies is still beyond the most 
optimistic scenarios. Control was ironically mentioned by Voltaire in 
the context of the great Lisbon earthquake: “It had been decided, by 
the University of Coimbra, that the spectacle of some people being 
slowly burnt, in a grand ceremony [an inquisitorial “auto-da-fé”], was 
an infallible way to prevent the Earth from shaking” [1]. More recent 
(and serious) attempts to control seismicity have been made but were 
always unsuccessful [2]. 

  Earthquake prediction is, arguably, the ultimate drive that led to the 
earlier development of seismology. 

  In 1999 the online edition of Nature magazine held a debate, which 
was moderated by Ian Main [3], under the theme “Is the reliable 
prediction of individual earthquakes a realistic scientific goal?” 

 In that very educational debate, supporters and adversaries of 
earthquake prediction confronted their arguments and in the end, as 
would be expected, no definitive conclusions were reached that could 
change anyone’s opinions. The main outcome of this debate was a very 
strict definition of what rules must be universally accepted in order to 
verify the goodness of forecasts and forecasting methods.

Definitions
In [3] Main introduced what he called “a sliding scale of earthquake 
‘prediction”:
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9.	 Time-independent hazard [estimation], where seismicity is 
assumed to be a stochastic (Poisson) process. Prediction is only 
probabilistic.

10.	 Time-dependent hazard [estimation], where seismicity is 
assumed to be variant in time, but no random. This includes 
the seemingly contradictory concepts of “seismic gap” [4] and 
of earthquake 48 clustering [5] but also that of a characteristic 
earthquake that is approximately periodic [6]. In the present 
context, many people in Portugal are convinced that the “big 
ones” have a repeat period of about two hundred years which 
would mean that we are now “late”.

11.	 Earthquake forecasting, where forecasting is based on the 
monitoring of precursory phenomena, which [3] apparently 
restricts to physical precursors. The author says that this kind 
of prediction “would still be probabilistic, in the sense that 
the precise magnitude, time and location might not be given 
precisely or reliably (…) Forecasting would also have to include 
a precise statement of the probabilities and errors involved 
(…) The practical utility of this would be to enable the relevant 
authorities to prepare for an impending event (…)”.

12.	 Deterministic prediction, where earthquakes are assumed to 
be inherently predictable – seismicity would thus be a purely 
deterministic process – within very narrow time, magnitude and 
location windows.
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  What will be discussed in the present work is Main’s concept 3, or 
“earthquake forecasting”. Main focuses on physical precursors but the 
concept can be extended to the analysis of time series of seismical 
parameters in earthquake catalogues assuming, which is common 
sense, that each earthquake is a precursor of the next one. It is well 
accepted today that seismicity is neither purely random (not even in 
time, since we know for centuries that it is not at all random in space) 
nor purely deterministic – it is a chaotic process and, most likely, one 
of self-organized criticality [7]. 

 This leads us to the definitions of foreshocks, main shock and 
aftershocks. These terms have been used too loosely, and it is common 
to read in the generic press that “an aftershock (or replica) can be 
stronger than the main shock”. This use has the social benefit of 
preparing the populations for a worst-case scenario, not neglecting 
vigilance after a strong earthquake, but is scientifically unsound. In 
an earthquake swarm, the strongest event is the main shock, those 
previous to it are foreshocks and those after it are aftershocks. Even 
so, recent work helped cast some additional confusion over these 
definitions: “main shocks are aftershocks of conditional foreshocks”… 
[8].

Sociology of Earthquake Forecasting

  Earthquake forecasting has been a concern not only of seismologists 
but of the whole of society, from the everyday citizen to the large 
corporations (utilities, insurance companies).

  The most cited successful prediction case was the Haicheng (People’s 
Republic of China) earthquake on February 4, 1975 (M=7.9). 
Prediction was based on the analysis of a foreshock swarm but also 
on Chinese traditional methods, which included the observation 
of abnormal animal (mostly snakes) behavior. Another successful 
prediction was later made by Chinese authorities for the August 16, 
1976 (M=7.2) Songpan earthquake. Adversaries of prediction claim 
that these successful predictions were the only ones (as a matter of 
fact, the Songpan prediction is mostly forgotten), and that the same 
methods failed to 81 predict the Tangshan earthquake (July 27, 1976; 
M=7.6; more than 250,000 casualties).

  Lore has it that hundreds of thousands of lives were spared by the 
timely evacuation of Haicheng province but these numbers don’t 
seem to be supported by documental sources [9].

  A strong point remains, however, that even if a single human life 
was spared because of an accurate scientific prediction, this is ample 
justification for endeavoring in prediction research. This is also an 
argument in favor of a continuing publication of predictions, which is 
not the same as the issuing of occasional strong earthquake warnings. 
The social aspects of earthquake forecasting should be taken into 
account. Some authors (e.g. [10]) mention that the side effects of a 
prediction (panic, market falls, insurance rises) could be worse than 
the effects of the earthquake itself. This, however, has never happened, 
either in China, or in Japan (between1965 and 1967), or in the USA 
(1974, 1988, 1992). All these predictions proved to be false alarms 
and had no social consequences apart from a growing public and 
administration disbelief in earthquake prediction [9]. Since then, no 
formal “earthquake warnings” were issued by authorities, as far as the 
present author knows.

  The prediction of another type of chaotic phenomenon – weather 
forecasts – has been around for decades and perhaps we can draw 
lessons from this application.

  The argument that earthquake forecasting can cause widespread 
panic (which we saw is unlikely) has been surpassed by meteorology 
and climatology. Although the annual damages caused by weather 
are atleast one order of magnitude higher than those caused by 
earthquakes, short-range weather and long-range climate forecasts 
haven’t been known to cause social distress. This happens because 
meteorology has entered our everyday lives, helping us plan everything 
from vacations to crops and, furthermore, helping the authorities in 
large-scale planning.  

  Imagine, for a while, that weather forecasts were only issued prior 
to extreme weather phenomena. This could be both a cause for social 
insecurity or for apathy if, as in the case of earthquake forecasts, 
most predictions were wrong. Remember that, although short-term 
weather forecasts are very accurate, long-term weather forecasts are 
arguably not better than earthquake forecasts if seasonal effects are 
removed. 

  As [11] puts it, “(…) scientists have an even greater responsibility 
to communicate carefully their findings in earthquake prediction. By 
this, I do not mean keeping quiet about results. (…) Our obligation 
is to communicate our results in the clearest possible way, including 
when possible a statistical assessment of their validity. (…) Research 
should be separate from public policy, and the criteria for public use 
of earthquake information should be independent of the criteria 
for scientific study. (…) We cannot justify expenditures if we have 
not demonstrated that our assessment is better than random. This 
approach to public policy is independent of scientific research where 
we must continue the research into causal precursors both for our 
understanding of the physics of earthquakes and for any future hope 
of obtaining a predictive precursor.” 

Some strong ideas arise from [11]:

i.	 Public accountability: the public is entitled to know how we 
spend their taxes. 

j.	 Clarity in the dissemination of results, always including a 
probabilistic estimate of their validity. 

k.	 Forecast quality should be measured against random 
probabilities. 

l.	 Public policy should take into account the results (statistical, 
informational) of earthquake prediction research – albeit with 
different criteria than those governing research on physical 
precursors. 

Geller, a “forecasting skeptic”, puts forward another strong requirement 
[12], that

13.	 “(...) prediction proponents should, but do not, provide a 
‘predictor in the box’ software package, with all parameters 
fixed. [Is there a meteorological ‘predictor in the box’?] (…)The 
software package would then generate predictions that could be 
tested against an intelligent null hypothesis”. 

This work intends to address these five issues.

  Cautious publication has been a concern of the present author. The 
forecasts that were made were always first published in specialized 
meetings and publications. However, on many occasions, the 
existence of a forecasting method and its simplified description were 
widely divulged to the generic media. The forecasts themselves weren’t 
because, until now, there was no clear, un-alarming way to make that
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divulgation. One of the main purposes of the present work was to try 
and find a way to make earth quake forecasts available to the public.

The proposed forecasting method should evolve into the periodical 
publication of seismic probability maps as those that are shown 
below. This will have two beneficial effects:

a.	 To get the general public acquainted with earthquake 
forecasting, its successes and failures, helping, at the same time, 
to divulge a much needed culture of responsible safety and 
preparedness.

b.	 To the authorities, since civil protection resources are always 
scarce, the knowledge of an increased probability of an 
earthquake occurrence could help cluster some of those 
resources on the most threatened areas during the windows of 
highest probability. 

   One area where scientists are not accountable is on the effect of their 
work on public policy – provided the authorities have knowledge 
of the forecasts that are eventually made. The results of the present 
work have been previously communicated to the Portuguese civil 
protection authorities, and will continue to be so.

  The issues of the evaluation of forecast quality and of providing a 
“predictor-in-a-box” will be dealt with in the next paragraphs. 

How to Evaluate the Quality of a Forecast

  The theory of probability was developed mainly as a theory of 
gambling by French mathematicians of the 18th century. Even today, 
compulsive gamblers compile extensive statistics of the outcomes 
of their game of choice, in the chimerical hope to beat the odds. 
Was it Laplace who said that “lottery is a tax on the mathematically 
ignorant”? The underlying principle is that even a minute gain 
over the probability of a random event can be turned into a large 
profit. This principle cannot be applied to truly random processes 
which, by definition, have no memory, but is indeed applicable to 
the forecasting of processes with some memory, such as earthquakes: 
any method that yields better forecasts than a conventional statistical 
(Main’s type 1) analysis can be made to produce social benefits.

  There are several statistical methods to evaluate the quality of a 
forecast. Of these, four will be described here [13].

  Let there be Ai, any parameter of an actual earthquake, and Fi, 
the forecast that was made of the same parameter for the same 
earthquake, and N the number of (Ai, Fi) test pairs.
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   Mean square error (MSE) is the average of the squared differences 
between actual and forecast, and the root mean square error (RMSE) 
is simply the square root of MSE: 
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  Theil’s U-statistic (U) is much used in financial forecasting but less 
known outside this field:

  It is intuitive that Pearson’s correlation coefficient (R), between actual 
and forecast series should be a good measure of the generic success of 
a forecasting method. However, R suffers from a limitation: it is not 
scale-independent.
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  where  is the co-variance between actual and forecasted parameters 
and  and  are the standard deviations of both sequences. Seismicity 
being a strongly nonlinear phenomenon, a very high absolute R is 
never to be expected.

NCEL: An Earthquake Predictor-in-a-box

   Chaotic time-series arise in many fields, but one field in which their 
prediction is of everyday use is finance. A number of numeric tools 
was developed that enable technical analysts to forecast future trends 
in financial markets – the so-called “financial oscillators”. Time-series 
of earthquake parameters are also chaotic, often with comparable 
fractal dimensions, and testing the financial oscillators on seismicity 
was anatural step. The first applications of these tools for seismic 
prediction, though encouraging, had two shortcomings: first, their 
outputs are qualitative, since the oscillators only indicate if a trend is 
rising, declining or stable (“buy”, “sell” or “hold”); then, when several 
oscillators are applied to the same sequence the results are not always 
consistent. Both quantitative output and consistency were achieved 
by integrating the oscillators in an artificial neural network (ANN). 
ANN are software emulators of the nervous system and seemed 
adequate because of their mathematical universality, fault-tolerance, 
and ability to deal with semi-quantitative data such as the modified 
Mercalli intensity [14].
 
  The oscillators that are used were described in detail in [14]. These 
are moving averages convergence-divergence, relative strength index, 
real-modulated index, optimized decision index, stochastic oscillator 
and momentum. Another tool was used originally, a very simple 
minimal-distance pattern recognition algorithm, but it was replaced 
in the present work as will be seen below. 

 The neural network architecture that was chosen is a partially 
connected, feed-forward, back propagation, three-layered perceptron. 
The neurons are arranged in one input layer, one middle, orhidden, 
layer and one output layer; neurons in each layer do not communicate 
among themselves, but only with those in adjacent layer (s); the 
weights of the connections between neurons are updated according 
the delta-rule [15].

 The present author has been working for the past 15 years in 
the development of an earthquake forecasting method, with two 
successful forecasts in the Azores: the earthquakes of 1998.07.09 [16] 
and 2004.01.28 [17]. There were no false alarms.

  The forecasting windows were still too wide and efforts were made to 
narrow them the most, within the limits of predictability of a chaotic
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phenomenon. In short, one will never be able to specify a day of 
occurrence.

  Also, the geometric component of the input data and the forecasts 
was a semi-quantitative “location” parameter, not the usual latitude-
longitude geographical co-ordinates. In the Azores this parameter 
was, earlier [16], the island “number”, east to west, and, later [17], the 
absolute value of longitude, in degrees. 
 
  Another shortcoming of the previous works was that an analysis 
of the forecast errors in the training sets was never much deepened: 
those errors were used only to empirically derive confidence intervals 
for the forecasts.

Recent efforts to develop the neural forecasting method were focused on

a.	 Narrowing the forecast windows; 

b.	 Forecasting the geographical co-ordinates of the epicenter; 

c.	 Quantitatively assessing the forecast errors; 

d.	 Comparing the results of this method with those of other 
methods; 

e.	 Automating the method the most, so that it can be used routinely 
by anyone with a minimum preparation. 

These objectives were attained by integrating all prediction algorithms 
in a Microsoft™ Excel®workbook called NCEL. 

The NCEL workbook consists of eight worksheets and one Visual 
Basic® (VB) module. 

Worksheet “Cover” contains general instructions for use of the 
workbook.

  Worksheet “Main” is the only one where the user can input data: 
a series of up to 1000 records of four earthquake parameters, event 
time and magnitude, epicentral latitude and longitude. It should be 
stressed that input data must have some sort of pre-processing. In all 
the examples below, the series were truncated for the lower magnitude 
events (non-linear bottom part of the Gutenberg-Richter function). 
Also, as a crude rule-of-thumb method to filter off foreshocks and 
aftershocks only the strongest earthquake in each day was used. The 
user can also, if willing, hand-tune most of the parameters of the neural 
network: length of the training set, number of neurons in the middle 
layer, learning rate, learning momentum, limit target error and limit 
number of iterations. However, default values for all these parameters 
are supplied. Namely, in the earlier works, the length of the middle 
layer vector was chosen so that the total number of connections was 
of the same order of the number of training examples.

   In NCEL the default number of neurons in the middle layer is chosen 
according to the algorithm in [18] so that

  Where j is the number of neurons in the middle layer, m is the number 
of training examples, e is the allowed error in percent, and n and z are 
the number of neurons in the input and output layers, respectively. 
It is also from a button on this worksheet that the neural network 
training is started. Worksheet “Oscillators” computes the financial
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oscillators for the input series. Also, the original pattern recognition 
algorithm was here replaced by the Excel function “TREND”, based 
on the previous twenty events.

  Worksheet “Normalized” normalizes the input data and the oscillators 
in the [0,1] interval. 

 Worksheet “NN” de-normalizes the neural network outputs of VB 
module “NCEL” returning them in the familiar time-magnitude-
latitude-longitude form.

  Worksheet “Monte Carlo” performs Monte Carlo forecasts based on 
the input data on worksheet “Main”. Worksheet “Previous” performs 
naïve forecasts based on the input data on worksheet “Main”: it 
forecasts, for the next earthquake, exactly the same parameters that 
are recorded for the last one (which is a significantly successful 
method for weather forecasts for about half of the year). Worksheet 
“Averages”, another naïve approach (or maybe not so much, as will 
be seen below), forecasts, for the next event, the average for each 
parameter of all the previous events.
 
 Worksheet “Error Analysis” calculates and compares the error 
parameters (see 4, above) for the four forecasting methods. After 
starting the neural network training process from sheet “Main”, the 
user is directed to this worksheet, where the train-test procedures 
evolution can be followed.
 
  Visual Basic module “NCEL” performs the neural network training 
and testing procedures. The training procedure is based on the 
algorithm provided by [19]. In its earlier versions, “NCEL” followed 
closely the previous method, with the exception of forecasting the 
epicentral co-ordinates. Several test runs made over well known 
datasets showed unexpected results: many times the forecasts that 
were made by the “Averages” naïve method produced the smallest 
errors, mainly in MAD. In order to quantify this result and to further 
automate the forecasting procedure, the current version of VB 
module “NCEL” was all included in a loop that stops on one of two 
conditions: a command that is entered by the user or [MAD(NN) < 
MAD(Averages)] for the time parameter. Worksheet “Error Analysis” 
keeps track of the number of times that the neural network performs 
better than the “Averages” algorithm.

 Error on the time-parameter was chosen as a stopping criterion 
because, intuitively, time is both the most important and the most 
difficult parameter to predict.

 Why are the results not always the same? The “Previous” and 
“Averages” spreadsheets, once initially computed are, of course, 
invariant. Differences arise on each new calculation of spreadsheets 
“Monte Carlo” (because of the intrinsically quasi-random nature of 
the method) and “NN”. In the NN case, the differences occur because 
of the randomly initiated connections’ weights. However, unlike in 
“Monte Carlo”, the final results of different network runs never differ 
by more than 5% (on 300 tested cases). 

The data-set that was used to test NCEL is based on two sources: 
[20] for earthquakes from January 1, 1852 until June 30, 1991 and 
[21] from July 1, 1991. These data were spatially filtered between co-
ordinates 34⁰ and 44⁰ N latitudes, and 5⁰ and 15⁰ W longitudes. Then 
the data were further truncated for completeness at M=5.0, where M 
stands for the highest magnitude reported for each event. The final 
data- set consists of 118 events. The best results for NN forecasts after
 

mej
n z

=
+
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100 runs of module NCEL are shown in table I, “best” meaning here 
the smallest MAD on times of pause, which was the NN stopping 
criterion. Several conclusions can be drawn from table 1.

The scaling problems of R are obvious from a comparison of these 
parameters on dates and times of pause, which have exactly the same 
physical meaning but show very different R, meaninglessly always 
“good” for dates. 
The NN has the best performance in all error parameters for pauses 
and latitudes.
The NN has the highest R for all forecast parameters. The values for 
pauses (0.512) and latitudes 284 (0.535) are significantly higher than 
the highest published value for tests of the earthquake forecasting 285 
ability of neural networks, which was of 0.37 [22]. 
“Averages” has the best performance on MAD, U and RMSE for 
magnitudes and longitudes. 
Globally, the neural network performs best on 88% of the parameters. 
Neither “Monte Carlo” nor “Previous” are ever the best forecaster; 
even so, “Previous” performs better than “Monte Carlo” on 65% of 
the parameters. 

Presentation of Forecasts

 As was seen above the present author believes that forecasts 
should be disseminated to the public. Publication should be, at the 
same time, scientifically correct and understandable by the widest 
possible audience. Presentation of forecasts in the form of probability
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confidence intervals around the point- forecasted values satisfy the 
former (scientifical correctness) but not the latter (clarity for the 
general public) as can be seen in table 2.

 For example: the last two columns of table 2 shows the axes of 
confidence ellipses for several probabilities, P, for location of the 
epicenter of the next earthquake that was forecast by NCEL for 
continental Portugal. It is counter-intuitive that a higher probability 
should correspond to a wider area, as it does, and the same reasoning 
applies to magnitudes or dates. Publication in this form would be 
confusing. The authorities, however, should have access to this kind 
of tables.

  It was found that the objective of making forecasts understandable 
by the widest possible audience can only be accomplished in the form 
of maps, much in the same way that other kind of forecasts, based 
on aftershock rates, are being presented daily by the United States 
Geological Survey [23]. Another problem arises from the use of 
magnitudes, which are not directly interpretable by the general public 
[23]. sensibly suggest that the reference should be made to a macro 
seismic intensity such as the modified Mercalli intensity (MMI) scale 
and that the forecast threshold should be put on MMI VI - “when 
objects are thrown off shelves, worst-quality masonry may crack and 
public alarm begins” [24].

  This raises yet another problem: that of the magnitude-intensity 
conversion. Several magnitude-intensity conversion laws have been 
deduced and they are all of the form.

  Where I is the intensity, M the magnitude (usually, MS – surface-
wave magnitude), D the focal distance and a, b and c are empirically 
determined coefficients. For the present work, the chosen conversion 
law was that of [25], with a=1.5, b=5.0, and c=6.0. MS is being 
systematically reported only in recent years, so the magnitude that 
was used was the largest reported for each   event. Small changes in                                    

Index Meth Date Pause M Lat Lon 

        R
NN 
MC 
Pr 
Av 

0.99868 
0.99799 
0.99673 
0.99840 

0.462 
0.010 
-0.108 
0.215 

0.596 
0.152 
-0.035 
-0.043 

0.437 
-0.127 
0.141 
0.194 

0.116 
-0.063 
0.032 
0.145 

MAD
NN 
MC 
Pr 
Av 

305 
365 
464 
306 

305 
365 
464 
306 

0.27 
0.62 
0.40 
0.32 

1.53 
2.96 
1.88 
1.84 

1.69 
2.14 
1.87 
1.46 

Theil U 
NN 
MC 
Pr 
Av 

0.00062 
0.00100 
0.00150 
0.00079 

0.508 
0.824 
1.236 
0.650 

0.005 
0.021 
0.015 
0.008 

0.003 
0.009 
0.005 
0.003 

0.077 
0.106 
0.093 
0.049 

RMSE NN 
MC 
Pr 
Av 

442 
562 
689 
500 

442 
562 
689 
500 

0.37 
0.77 
0.66 
0.46 

2.07 
3.63 
2.79 
2.17 

2.46 
2.88 
2.70 
1.96 

Last Event Apr-10 126 5.0 35.27 -6.23 

Forecasts 
and 90% 
onfidence 
Intervals

NN 
From 
To 

Sep-11 
Apr-10 
Sep-13 

519 
0 
1246 

5.3 
4.7 
6.0 

36.23 
32.81 
39.64 

-10.59 
-14.63 
-6.55 

MC 
From 
To 

Sep-15 
Mar-13 
Mar-18 

1971 
1046 
2896 

5.5 
4.2 
6.8 

38.75 
32.78 
44.73 

-8.70 
-13.45 
-3.96 

Pr 
From 
To 

Mar-04 
Jul-03 
Dec-07 

126 
0 
1259 

5.0 
3.9 
6.1 

35.27 
30.68 
39.86 

-6.23 
-10.67 
-1.79 

Av 
From 
To 

Sep-04 
Jul-03 
Mar-07 

407 
0 
1229 

5.3 
4.5 
6.2 

37.97 
34.28 
41.43 

-8.76 
-12.00 
-5.53 

Table 1:  Best results for NN forecasts after 100 runs of NCEL.
NN: Neural network; MC: Monte Carlo; Pr: Previous; Av: Averages

Date M Lat Lon 

P Forecast Mai-04 5.2 38.80 -10.07 

0.500 Min 
Max 

Jun-03 
Apr-05 

4.8 
5.6 

37.37 
40.22 

-11.87 
-8.26 

0.680 Min 
Max 

Dec-02 
Oct-05 

4.6 
5.8 

36.68 
40.91 

-12.74 
-7.39 

0.750 Min 
Max 

Oct-02 
Dec-05 

4.6 
5.8 

36.36 
41.23 

-13.14 
-6.99 

0.800 Min 
Max 

Aug-02 
Feb-06 

4.5 
5.9 

36.08 
41.51 

-13.49 
-6.64 

0.850 Min 
Max 

May-02 
May-04 

4.4 
5.2 

35.75 
41.84 

-13.92 
-6.22 

0.900 Min 
Max 

Jan-02 
Sep-06 

4.3 
6.1 

35.31 
42.28 

-14.46 
-5.67 

0.950 Min 
Max 

Aug-01 
Feb-07 

4.1 
6.3 

34.65 -15.31 

42.94 -4.83 

0.980 Min 
Max 

Feb-01 
Aug-07 

3.9 
6.5 

33.87 
43.72 

-16.28 
-3.85 

0.990 Min 
Max 

Oct-00 
Dec-07 

3.8 
6.6 

33.34 
44.25 

-16.95 
-3.18 

Table 2: Confidence intervals for NN forecasts.

log( )I aM b D c= − + (7)
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a, b and c in equation (7), do not affect significantly the output, which 
will have the form of a color gradation map.

 The map for daily background probability of occurrence of an 
earthquake with I ≥VI was built in the following way: 

1.	 The study area was binned with a 0.1⁰ 0.1⁰ grid; 
2.	 For each of the 118 events in the working data-set intensity was 

calculated on each of the bins; 
3.	 A separate array stored the number of times, Ni, that I ≥VI was 

reached on bin i; 
4.	 Dividing each of the final Ni by the total number of days that the 

dataset spans, yields Pi, the daily probability that an earthquake 
will be felt with I ≥VI on bin i.

Probabilities were mapped to produce figure 1. 

 
   

To produce a probability map that incorporates both background 
and NCEL forecast information, the confidence interval ellipse 
for P=0.5 was used (see table 2). For each 0.1º  0.1º bin the highest 
probability was chosen (background or forecast), and plotted (figure 2).
 
Conclusion

  Averages – the calculation of recurrence periods – is a simple, 
straightforward, forecasting method that should continue to be used 
to make general planning and engineering decisions. However, it is 
out performed by the neural network.

The neural network is not some sort of “black box” into which we 
feed data and from which predictions are produced. It is simply an 
algorithm that allows to detect otherwise hidden patterns in the data, 
and could possibly be replaced by a multiple regression algorithm. 
The advantages of the neural network are that it is computationally 
lighter (multiple regression requirements grow exponentially with the
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number of degrees of freedom) and fault-tolerant: there are sometimes 
large errors in the determination of earthquake parameters, especially 
in older events.
 
  The method that was shown above can produce forecasts every 
time that there is a new earthquake. Those forecasts can, and should, 
be conveyed to the authorities in order to help rationalize scarce 
resources by assigning more of them to the most threatened areas 
during the windows of highest probability. Also the general public 
can benefit from the periodical publication of maps such as those that 
were shown here. Not only because the public has the right to know 
but also because they can, if informed, influence the authorities to 
produce better legislation and planning.
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