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Heat Shock Gene Sirtuin 1 Regulates Post-Prandial Lipid Metabolism with
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New discoveries in medicine are required to understand the
importance of appetite regulation that is associated with the
overconsumption of foodin Type 2 and Type 3 diabetes. Food
restriction in diabetes is essential to maintain the hepatic metabolism
of dietary fat with relevance to defective post-prandial lipid
metabolism and to the global non alcoholic fatty liver disease (NAFLD)
epidemic [1,2]. Premature brain aging has become important with
the development of Type 3 diabetesand Alzheimer’s disease [3] that
is associated with repression of the anti-aging gene Sirtuin 1 (Sirt 1)
relevant topost-prandial lipid metabolism, amyloid beta metabolism
(peptide involved in amyloid beta plaques)and circadian rhythm
abnormalities in the brain biological clock associated with the
development of NAFLD.Nutritional interventions such as very low
carbohydrate diets have become important to diabetes (Figure 1) to
reverse defective post-prandial lipid and amyloid beta metabolism
without atherogenic lipoprotein formation [4,5] with the prevention
of accelerated atherosclerosis in various communities. Western diets
that are high in fat and glucose are linked to diabetes and NAFLD
with anti-aging geneSirt 1 transcriptional dysregulation [6] in cell and
tissues associated with, hyperglycemia, mitochondrial apoptosis and
delayed hepatic fat and amyloid beta metabolism (Figure 1).

\

Figure 1: In diabetes and neurodegenerative diseases nutritional

interventions are required to activate the anti-aging gene Sirt 1 and

prevent defective liver lipid metabolism (NAFLD) and amyloid beta

metabolism. Diets that are low in fat such as very low carbohydrate

diets activate the calorie sensitive gene Sirt 1 with glucose metabolism

connected to accelerated hepatic lipid/amyloid beta metabolism in
\\diabetes and neurodegenerative diseases.

Accelerated aging that disturbs the brain to liver crosstalk [6,7]
involves the calorie sensitive gene Sirtuin 1 (Sirt 1) thatisa nicotinamide
adenine dependent dinucleotide class III histone deacetylase involved
in the prevention of defective post-prandial metabolism and NAFLD
[8-10]. The intake of fat is sensitive to the regulation of the heat
shock gene Sirt 1 that is responsible for the metabolism of heat shock
proteins(HSP) [3] that are produced by living cells in response to
temperature regulation above physiological levels [11, 12]. Heat shock
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proteins facilitate the rapid metabolism by the liver of amyloid beta

by preventing its misfolding and aggregation in the brain [3,13,14].
Sirt 1 is also sensitive to a-synuclein metabolism [15] and relevant
to temperature alterations in a-synuclein oligomer and amyloid beta
formation [16, 17].

Down regulation of Sirt 1 expression and activity disturbs the
nuclear and mitochondria interactions with effects on the metabolism
of fatty acids, glucose and amyloid beta metabolism in diabetes [16,
17]. Heat shock protein (HSP) induces endoplasmic reticulum stress
(ER) stress with delayed metabolism of amyloid beta/ a-synuclein
oligomers associated with liver disease linked to NAFLD and
neurodegenerative diseases. ER stress is associated with programmed
cell death with relevance to mitochondrial apoptosis, defective post-
prandial lipid metabolism and NAFLD [18-22] with Sirt 1 regulation
of PGC1 associated with mitochondrial biogenesis after ingestion
of various fat diets. Sirt 1 regulates HSP by deacetylation of heat
shock factor (HSF) via peroxisome proliferator-activated receptor
gamma co activator 1-alpha(PGCla) as a critical repressor of HSF1-
mediated transcriptional programs [23,24]. Sirt 1 is involved in body
temperature regulation of the mammalian target of rapamycin(mTOR)
signaling through the tumor suppressor tuberous sclerosis complex
1 with relevance to the expression of hepatic PGC-1a and fibroblast
growth factor 21 (FGF21) [25-29].

Sirt 1 regulation of cell senescence in diabetes involves cell ontogeny
with transcriptional ontogeny defective via the transcriptional factor
p53 involved in the regulation of various other anti-aging genes
[30-35] such as klotho, p66shc, FOXO3a, micro RNA 34a [18]
and transcription factors involve post-prandial lipid metabolism,
metabolic activity, insulin resistance, cellular ontogeny, inflammation
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and xenobiotic metabolism[18,36] (Figure 2). In the developing and
developed world diabetic treatment has become important with
defective Sirt 1 gene expression determined by miR-34a [18, 36]
related to defective cell proliferation in the brain and the liver (Figure
2). Defective thermoregulation may be relevant to ingestion of food
(Sirt 1 defective)with inappropriate post-prandial lipid and amyloid
beta metabolism that inactivate magnesium therapy that may now
be relevant to HSP and amyloid beta metabolism with relevance to
myocardial infarction [3,37].

4 N

Figure 2: Appetite regulation in diabetes involve the maintenance of the
heat shock gene Sirtuin 1 that is essential for thermo regulation function
and hepatic lipid metabolism. The repression of the anti-aging gene Sirt 1
involves p53/mTOR dysregulation of the other anti-aging genes (klotho,
p66shc, FOXO3a) associated with hepatic lipid, heat shock protein and
amyloid beta metabolism. FGF 21 treatment in diabetes has become
important to NAFLD [38] and myocardial infarction treatment [39, 40]
but defective cell transcriptional ontogeny in the liver and brain related
to mi-34a inhibition of Sirtuin 1/transcription factors interactions
inactivates hepatic lipid metabolism with the induction of NAFLD,
\defective amyloid beta metabolism and neurodegenerative disease. /
Food restriction and fasting regulate Sirt 1 and FGF21 involved in
the prevention of the metabolic syndrome and maintenance of high
density lipoprotein levels [39-41]. FGF21 therapy [42, 43] in Type
2 and Type 3 diabetes may be ineffective with the development of
cardiac ageing with relevance to core body temperature regulation that
is determined by mi-34a/Sirt 1 gene expression with low adiponectin
levels [36,44] (Figure 2). Healthy diets that maintain Sirt 1 activity in
the brain and liver have become important to many diabetics in the
developing and developed world with relevance to food technology
that involve the hepatic metabolism of bacterial lipopolysaccharides
(LPS) that has become important to the reversal of Type 2 diabetes
and Type 3 diabetes [45, 46]. Plasma LPS and xenobiotic levels
[47] have risen in various developed countries and consumption
of activators such as leucine, pyruvic acid and magnesium may
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supersede LPS inhibition of Sirt 1 [18, 37] with prevention of defective
cell transcriptional ontogeny and membrane transformations in the
brain and liver [45, 46]. Appetite dysregulation in diabetes may require
these activators of Sirt 1 with relevance to the maintenance of neurons
and the treatment of Type 3 diabetes with defective apelinergic system
that involves thermo dysregulation.

Conclusion

Dyslipidemia is one of the key risk factors for cardiovascular disease
in diabetes. The management of dyslipidemia in diabetes continues to
remain controversial and improvements in the characteristic diabetic
dyslipidemia of high triglyceride and low HDL may not indicate
that defective cell ontogeny is underway early in life. Diabetes and
defective hepatic cell transcriptional programs induce delayed post-
prandial lipid metabolism associated with Western diets rich in fat and
glucose. The clinical management of diabetes in the young and elderly
now not only involves appetite regulation with calorie restricted diets
that maintain the heat shock gene Sirt 1 expression but also careful
core body temperature (37°C) to activate hepatic and brain Sirt 1. The
biological active release of FGF21 is connected to Sirt 1 activation
and glucose homeostasis with relevance to treatment of dyslipidemia,
NAFLD, cardiovascular disease and neurodegenerative diseases.
Consumption of Sirt 1 inhibitors such as alcohol, suramin and
palmitic acid should be avoided to prevent defective liver and brain
cell ontogeny in the young and the elderly to prevent hyperglycemia
induced oxidative stress and myocardial infarction.
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