
Abstract

The paper gives a short system engineering review on the treatment of diabetes covering control 
engineering and mathematical modeling issues. The Artificial Pancreas (AP) concept is discussed 
together with the Intensive Care (ICU) idea for automatic treatment of diabetic patients. This highly 
interdisciplinary concept involves beyond medical sciences, control engineering and biomedical 
engineering knowledge. Having already developed continuous glucose sensor devices and highly 
performant insulin pumps, the automatic control concept could be an efficient solution for millions of 
people living with diabetes for accurate metabolic conditions management.
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Introduction

Diabetes Mellitus (DM) or shortly diabetes is used as the 
collective name of several chronic metabolic diseases of the 
human body where by impaired insulin production the human 
body cannot automatically regulate the glucose level [1,2]. 
Different types of DM exist associated with diverse symptoms
and side effects. The main types are the following [3]: 

1) Type 1 or insulin-dependent DM (T1DM);
2) Type 2 or insulin-independent DM (T2DM);
3) Gestational DM (GDM);
4) Double DM (DDM);
5) Genetic related DM (GrDM);
6) Other types of DM which can be induced by different kind of 
diseases, drugs, chemicals and cancers [3]. 

Type 1 and type 2 cover more than 95% of the cases, T1DM being 
more critical. T1DM is an autoimmune disease, which mainly appears 
in young age and its general medical symptom can be described by 
the fact that the immune system of human body automatically 
destroys the beta-cells responsible for insulin production. As a result, 
in case of T1DM the patient needs immediate insulin treatment to 
avoid the metabolic breakdown, which starts with hypoglycemic and 
ketoacidotic state and ends with the death of the patient [2,4]. This is 
the fact why T1DM is known as insulin dependent DM.

T2DM is the ’Civilization Disease’ form of DM as it is largely 
related to the wrong or not appropriate nourishment [5]. T2DM is a 
self-generating process which appears after long term hyperglycemia 
slowly increasing insulin insensitivity during the years. No insulin 
injection is needed at the beginning of this type of DM, but in its 
final un- or poorly-treated stage it needs continuous external insulin 
treatment to handle the level of glycemia [6, 7]. In case of DDM the 
worst effects of T1DM and T2DM prevail, namely, the autoimmune 
effects are coupled with increasing insulin resistance. This type of 
DM has upward prevalence in the recent years, which caused by 
the double metabolic stress comes from genetic predisposition and 
lifestyle [8-10].

GDM occurs during pregnancy and most of the cases the DM state 
ends with the birth, however, those women who suffer from GDM 
particularly are inclined to emergence of other type of DM in their 
later life [11, 12]. Genetic and the other types of DM can be caused by 
several disorders [3]. Unfortunately, the occurrence of DM shows an 
increasing trend. According to the World Health Organization’s study 
diabetic population will be doubled from 2000 to 2030 exceeding 366
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million people [13]. Newer studies have reported that this number 
is already exceeded and the total count of the diabetic population 
was around 382 million in 2013, worldwide. Moreover, the projected 
number of diagnosed and undiagnosed DM cases is going to reach 
592 million in 2035 which is the 4.8-6.1% of the estimated total 
human population on Earth [1,14].

Although DM is still incurable, the therapy of DM presented 
considerable progression in the recent years, for instance the 
appearance of different cell stimulating drugs [7,15], partial 
immunosuppressant drug applications in order to reduce the 
autoimmune effect [16], transplantation of Langerhansislets [17] or 
pancreas [18] and stem cell experiments [17] are just some of the 
achieved results.

The regular treatment for a diabetic patient on insulin treatment is 
based on external insulin injections. There are two main directions for 
the insulin administration:

•	 Insulin administration with insulin pens, which represents the 
ordinary, conservative therapy;

•	 Insulin administration with insulin pumps, which is a highly 
developed electromechanical device.

Both methods have the same purposes from a diabetic patient point 
of view: keeping the blood sugar level in a narrow, normoglycemic 
range (3.9-6 mmol/L or 70-110 mg/dL). An important part of these 
therapies relies on reaching different quality requirements, like 
body weight, level of physical activation and levels of physiological 
markers. The main difference is the way how these requirements 
are achieved. By the appearance of the insulin pump therapy the 
automated treatment possibility of diabetic patients has created 
known as the Artificial Pancreas (AP) concept. AP represents today 
the most challenging engineering tool in the treatment of DM [19]. In 
the following section, we summarize the AP concept, realization tools 
and devices, and the engineering considerations behind.
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Discussion

The concept of Artificial Pancreas In order to realize an AP three 
necessary subparts is needed [19-21]:

1.	 An insulin pump that stores and injects the rapid acting insulin;
2.	 A Continuous Glucose Monitoring System (CGMS) for 

continuous blood sugar level measurement;
3.	 Appropriate software components including control algorithms, 

user interfaces, drivers.

Several insulin pumps are available on the global market [22-24] 
with different solutions. The basic concept is an ’All-in-One’ type 
device, where the hardware, mechanical and software subparts are 
integrated into one device [25]. The other conceptual realization is 
the divided solution, where important subsystems like the control 
algorithm or raw data processing are running on an additional device 
[26, 27]. The insulin pump contains an insulin cartridge, a Graphical 
User Interface (GUI), the battery and the necessary mechanical and 
hardware elements to inject the insulin and to operate the device. 
The CGMS system is used in parallel with the insulin pump. The 
operations of CGMS are based on various principles.

In practice, the most widely used systems are external devices fixed 
on the abdominal skin surface and connected to the subcutaneous 
level through a thin catheter. The most frequent measuring principles 
are enzymatic based (Glucose Oxidase (GOx)). Beside its several 
benefits CGMS has also some disadvantages mostly from control 
engineering point of view: sensors measurements are done only every 
5 minutes. Implantable CMGS have been also appeared, but these are 
not available on the market, yet [28].

As mentioned above, the third necessary component to realize 
the AP is the appropriate software elements, including the control 
algorithms, the  ”soul” of this approach. Figure 1 shows the schematic 
representation of the AP concept.

Control Algorithms for AP

Due to the fact that insulin pump therapies are used mostly in 
case of T1DM, the advanced control algorithms developed inside AP 
researches focus on this DM form. The main expectation from an AP 
control algorithm is the automatic glucose regulation in order to keep 
the blood glucose concentration in the normal glycemic range, i.e. 70-
110 mg/dL (3.9-6 mmol/L) and relying if possible on the compliance 
of the patient. The ultimate goal is to avoid the dangerously low blood 
glucose levels (massive hypoglycemia) that could directly endanger 
the patients’ life.

As DM is a widely researched area of biomedical engineering, 
almost every control method can be found in the literature. The most 
important directions focus on model predictive control” (MPC), 
fuzzy rule-based, classical PID control or robust control techniques; 
however, without having yet a general solution on the problem [19-21]. 
Simplistically, every control algorithm considers similar principles; 
namely, the fulfillment of prescribed quality and quantity properties. 
The first attempts on this area were related to ”Proportional-Integral-
Derivative (PID)” control being still the most widely used classical 
control technique in the industry. Although the basic concept of 
PID control is not too sophisticated, highly advanced solutions like 
robust PID [30, 31] or switching PID [32] have been applied for the 
AP concept.
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MPC techniques represent probably the mostly used advanced 
control method in the AP concept, but they suffer from intra- and 
inter-patient variability and external noises. MPC is a model based 
solution meaning that the controller tuning is based on the properties 
of a mathematical model (called nominal model). Nonetheless, 
MPC algorithms produce the best results in individual therapy with 
considering closely ideal conditions. Several, highly developed MPC 
based control solutions appeared in the recent years like Robust 
MPC (RMPC), Nonlinear MPC (NMPC), Robust, Nonlinear MPC 
(RNMPC), MPC with moving horizon [33-36].

Soft computing methodologies have been applied also several times 
in the AP concept, but only in the recent years have been investigated 
in clinical trials [37-39]. Modern robust control methods like L2- or 
H∞-based ones were introduced in the AP researches in order to 
stave off the determinative uncertainties coming from inter- and intra 
patient variability. Supplemented by Linear Parameter Variability 
(LPV) methodology (providing the opportunity to handle the original 
nonlinear system/model as a linear one; hence, to give access using 
the original nonlinear model for linear control methods enumerated 
above), modern robust control successfully deals with the quality and 
quantity requirements [40-43].

 
Another useful direction in this domain proved to be the 

combination of LPV methodologies with Linear Matrix Inequalities 
(LMI)-based one [44], [45]. Its newest direction is connected to Tensor 
Product (TP) transformations based LMI controller design that is not 
validated yet in AP, but it can be useful in control of physiological 
systems [46-48].

Dual hormone controllers consider beside the insulin the glucagon 
hormone as well; hence, it represents another conceptual control 
approach in AP researches [49]. Clinical trials also starred in this 
direction with encouraging results [50].

Evolution of modeling aspects of diabetes from control perspectives

Controller design applications require a valid mathematical 
description of the physiological process of glucose-insulin interaction 
reflected in a mathematical model. The main considerations in the 
modeling of DM respect to the AP concept are briefly summarized 
in this section.

Figure 1: General concept of the AP[29].



Figure-2 emphasizes the key elements to be accounted during 
modeling and controller development. The modeling of diabetes 
started with patient models having today highly advanced models 
available [20].

The directions in this sense can be structured in two parts: inpatient 
and outpatient therapies. The goals of such models are different, since 
the circumstances and the environment of the patient are different. 
The followings give a short review on the evolution of the modeling 
parts developed from control theoretical perspectives.

Inpatient therapies mostly connect to Intensive Care Unit (ICU), 
where the strategy is to use as simple patient models as possible. As 
the patient’s environment is controlled by qualified medical staff and 
exact protocols, precise glycemic control is possible with prediction of 
the future condition of the patient as well. In the outpatient concept 
the patient requires complementary aspects as well, since physiological 
considerations to be taken into account are more complex then the 
ICU case; hence, the main expectation from an AP is an efficient 
control of the glycemic level with uncertain or sometimes unknown/
unrecorded events from the patient.

 
As a result, in parallel with the patient models additional models 

were included in the modeling loop in order to give more precised 
and more realistic physiological (models of digestion, absorption, 
β-cell, etc.) and physical (models of devices, sensors, etc.) processes.

The minimal model

As previously mentioned, the first models in the field of AP 
researches were connected to individual patient models. Their 
most important example is the Minimal Model (MM) developed by 
Bergman et al. [51-54]. Several extension of the MM were born in the 
last decades, however, the key concept remained the same in every 
case. One of these is the following modification [19]:
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The model stands from two main parts: the first two equations 
describe the glucose disappearance, while the third one is for the 
insulin kinetics. The main idea behind is that the patient gets glucose 
through p(t) [mg/min] meal absorption rate and the other input 
is the external insulin injection, u(t)  [mU/min]. After a meal the 
absorbed glucose gets into the blood stream; hence, the blood glucose 
(BG) level, G(t) [mg=dL] is increasing. If G(t) is different than the 
pancreatic target glycaemia h [mg=dL], then the β -cells injects insulin 
to the blood. However, in case of T1DM (γ = 0) where these cells were 
burned out, the only insulin source is the external injection, u(t) 
[mU=min]. The connection between glucose and insulin dynamics is 
the rate of glucose disappearance, X(t) [min-1], which is higher if the 
level of insulin is increasing. Over the year’s lot of patient models were 
derived from the MM.

The ICU models

The ICU models maintain the MM structure, but in a more 
sophisticated way. The state variables are usually kept in low level 
ranges while taking into account important kinematic (e.g. decay 
velocity, diffusion) and physiological (e.g. glucose production of the 
liver) issues. Important representatives of such kind of models are the 
Canter bury models [55-60]. However, other models appeared as well 
[21].

Outpatient models

 The outpatient models developed for the AP concept consider 
several physiological constraints and effects: the insulin dependent 
glucose consumption of the tissues whom main energy source is the 
glucose like muscles; the insulin independent glucose consumption

Figure 2: Summary of the modeling questions of the AP concept. 
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of the nervous system; continuous glucose production of the liver 
(via the glycogenesis-glycolysis); absorption, diffusion, clearance and 
decay of the insulin and glucose; the effects of the insulin, etc. Most 
of these AP models are valid for T1DM due to its general symptom, 
the total lack of internal insulin production, and operate with high 
number (6-10) of state variables. One widely used model family was 
developed by Padova- Virginia group [19,20,61,62]. Based on their 
researches they created an FDA-approved diabetes simulator as well 
[63]. Another highly developed solution was created at Cambridge, 
UK [64,65]. A more complex advanced patient model was published 
at the MIT Boston USA [66], with more than twenty state variables. 
Although these models are highly developed, they do not provide 
solutions to other types of diabetes.

Model extension to the type 2 diabetes case

Based on the diabetic status of the patient modeling and control 
considerations occurring in T1DM can be used in the therapy of 
T2DM patients as well. However, mathematical modeling of T2DM 
is not a trivial question, since the internal insulin production of the 
body should be taken into account. Furthermore, it is really hard 
to identify the diabetic status of the patient. Initially, the insulin 
production can be really high over years (to compensate the high BG 
level); nevertheless, with the progression of the disease the insulin 
production is decreasing and finally, cease with the burnout of the 
β - cells. Moreover, high inter- and intra-patient variability can be 
occurred in the amount of the produced insulin because of several 
environmental causes. Important issue represents the discontinuous 
secretion of insulin, having rather a pulsatile nature hard to model 
[67]. That is the reason why only in the recent years T2DM models 
appeared [45,68-70]. Double diabetic state and the pulsatile nature of 
internal insulin production was also successfully modeled [70]. The 
models can be even more precise if the β -cells are also taken into 
consideration [71].

Model extension to the type 2 diabetes case

Digestion and absorption models can be essential parts of a patient 
model as the effects caused by these physiological processes affect 
directly the variation of the BG level. Digestion models contain more 
details (i.e. more state variables, considered effects, etc.) as they should 
describe the whole nutrition procedure (from the meal boluses to the 
glucose absorption into the blood). Absorption models are simpler 
because they describe the way of the glucose from the gastrointestinal 
system into the blood. Usually these kinds of models are focusing only 
to the carbohydrate (CHO) intake. Highly advanced digestion model 
was developed by Andreassen et al. [72,73], considering not just the 
CHO, but also complex meal intakes. The model of De Gaetano et 
al. [74] and Dalla Man et al. [61,75,76] considered only the CHO 
intake; however, the model structures are easier to be connected to 
the AP models having high precision as well. 6) Sensor models: The 
subcutaneous glucose route and its dynamics represents an important 
question in the glucose modeling as well, since the commercially 
available CGMS devices measure interstitial fluid glucose level and 
use a mathematical model or algorithm to calculate the most likely 
BG level [77]. Usually the diffusion model is embedded into the 
patient model [61,64], but it can be placed into the sensor model 
as well [78, 79]. Simple compartmental models are also useful for 
this aspect of the AP concept [80]. In most of the cases, noise and 
disturbance models are implemented directly in the above mentioned 
models. White noise is the basic noise type using with patient and 
sensor models, while the aging effects of enzymatic based sensors

are always treated as disturbances. Finally, regarding validation and 
testing the importance of the feeding protocol should be emphasized. 
Due to the fact that the developed solutions should be tested in 
realistic circumstances, randomized feeding protocols are used. That 
means that the time frames, amounts and composition of the meal 
intakes vary during the simulation time.

Conclusion

Diabetes Mellitus is an incurable, but treatable disease. For diabetic 
patients AP could represent probably the most performant solution 
maintaining their condition in an automatically controlled way. The 
paper gave an overview of the AP concept, devices, models and the 
control engineering issues. The clinical trials started in the last years in 
the AP researches place the concept very close to market applicability 
and hence to a reality. 
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