
Abstract

In designing the behaviour of systems and software using hierarchical state machines, the issue is
whether the designers can properly layer the states or not. This is because improper layering easily makes
hierarchical state machines complicated to hinder its readability and testability. To settle the issue, this
paper proposes a method and tool to evaluate the descriptive quality of hierarchical state machines. The
method defines two complexity measures of evaluating the hierarchy from the two perspectives of state
and state transition, enabling to evaluate the descriptive quality of a single hierarchical state machine
individually. Based on the method, the tool has been developed to support designing the diagram. The
results of experiments to apply this method and tool shows their effectiveness in designing hierarchical
state machines in a quality way.

Design Support Based on Evaluation of Descriptive Quality of
Hierarchical State Machines

Publication History:

Received: April 30, 2022
Accepted: May 13, 2022
Published: May 16, 2022

Keywords:

State machines, Hierarchy,
Complexity measures, Design
support

Original Article Open Access

1. Introduction

The state transition diagram is suitable for describing the dynamic
behaviour of the system, and has several advantages for systems
and software design. One is the human comprehensible graphic
representation, and the other is the mathematical background for
performing formal verification and code / test case generation.

The original state transition diagram does not have a hierarchical
structure of states (hereinafter referred to as a simple state transition
diagram). When the system to be described becomes complicated,
the number of states and the number of state transitions explosively
increase in the simple state transition diagram, and therefore it is
difficult to use it in a realistic design. To solve this problem, Harel
devised an enhanced state transition diagram, Statecharts, which
introduces hierarchy and parallelism into a simple state transition
diagram [1].

Statecharts are used in various systems and software development
since they are highly practical. Statecharts are used as state machine
in UML (Unified Modelling Languages) [2] and SysML (System
Modelling Languages). In this paper, Statecharts and UML state
machine are collectively referred to as hierarchical state machines.

In behavioural design using a state machine, the issue is how to
properly layer states. Improper layering makes the state machine
complex to reduce its quality, such as readability and testability.

This paper proposes a method and tool to evaluate the descriptive
quality of a hierarchical state machine to solve this problem. This
method defines two measures to evaluate the hierarchy of the machine
from two perspectives: states and state transitions, both of which are
normalized using evaluate scale measures to evaluate the machine
independently. The tool was developed to demonstrate how the
method can be used to help designers to create quality state machine
diagrams.

In this paper, Section 2 explains hierarchical state machines and the
problems to use them for systems and software design, and Section

*Corresponding Author: Prof. Tsuyoshi Nakajima, Department of Computer
Science and Engineering, Shibaura Institute of Technology, Tokyo, Japan, Tel:
+81-35859-8514; E-mail: tsnaka@shibaura-it.ac.jp

Citation: Nakajima T, Takayama Y, Tokumoto S (2022) Design Support Based on
Evaluation of Descriptive Quality of Hierarchical State Machines. Int J Comput
Softw Eng 7: 177. doi: https://doi.org/10.15344/2456-4451/2022/177

Copyright: © 2022 Nakajima et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

3 describes existing measures for evaluating the descriptive quality
of hierarchical state machines and their issues. Section 4 defines the
requirements for evaluating the descriptive quality of the diagram and
Section 5 proposes a method to satisfy them. Section 6 describes an
experimental evaluation of the method and its results. Section 7 shows
a prototype of design support tool based on the proposed method.
Section 8 provides related works, and Section 9 concludes this paper.

2. Hierarchical State Machine and Its Issues

Hierarchical state machines

The hierarchical state machine is a graphical notation that enables
compact description of systems and software by giving hierarchy
and parallelism to the simple state transition diagram. The state
created by exclusive division (OR decomposition) of a certain state
is called the OR state, and the state created by parallel division (AND
decomposition) of a certain state is called the AND state.

Hierarchy is repeatedly to introduce a common state to aggregate
multiple OR states, which is also an OR state. This common state is
called abstract state. Abstract states can have shared entry and exit
actions and exit transitions, which greatly simplifies the diagram
while retaining the same semantics. The abstract state also has the
effect of modularity, dividing its interior and exterior.

Parallelism is to introduce parallel states each of which represents
an independent state variable. A state can have many regions
representing parallel states (AND states).

International Journal of
Computer & Software Engineering

Tsuyoshi Nakajima1*, Yoshihisa Takayama1 and Shuichi Tokumoto2

1Department of Computer Science and Engineering, Shibaura Institute of Technology, Tokyo, Japan
2Information Technology R & D Center, Mitsubishi Electric Corporation, Kamakura, Japan

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 7. 2022. 177

 Nakajima et al., Int J Comput Softw Eng 2022, 7: 177
 https://doi.org/10.15344/2456-4451/2022/177

https://doi.org/10.15344/2456-4451/2022/177
https://doi.org/10.15344/2456-4451/2022/177

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 7. 2022. 177

The AND state allow us to describe the parallel operation of
independent devices as they are. In the simple state transition
diagram, it can be expressed only by multiplying the states, in which
the number of states and the number of state transitions increase in
combination. In contrast, the hierarchical state machine can reduce
the number of both states and state transitions.

Descriptive quality of hierarchical state machines and the issues
on measuring it

Hierarchical state machines make it possible to describe large-
scale and complex systems compactly, and to create highly readable
requirements specifications and design specifications with rigorous
syntax and semantics. As a result, implementing and testing them in
the subsequent processes can proceed smoothly, and maintainability
of requirements specifications and design specifications can be
improved.

On the other hand, the introduction of hierarchy and parallelism
gives the designer some increased freedom in where and how much
hierarchy and parallelism should be used. This is one of the main
reasons why different state machines with different descriptive quality
are created even for the same behaviour depending on the designer's
skill.

We define the descriptive quality of hierarchical state machines as
the following two characteristics:

Modularity: degree to which the specification can be divided into
independent parts with no / little interactions between them:
i.e., the hierarchy separates the lower levels (inside) from upper
(outside) levels of an abstract state, and the parallelism decomposes
a state into the AND states. Modularity enhances the readability
and reusability of descriptions, reduces implementation errors,
improves the effectiveness and efficiency of design inspections and
testing.

Ease of implementation: degree to which the specifications are
easy to implement, which is because the firing conditions for state
transitions are integrated to reduce the number of actions. Ease
of implementation enhances readability and testability as well as
reduces the code size to be implemented.

Using examples of air conditioner operation modes shown in Figure
1 and 2, the descriptive quality of the hierarchical state machine is
explained.

Figure 2a and Figure 2b are two examples of hierarchical state
machines that have the same behaviour as the simple state transition
diagram in Figure 1. Figure 2a is a bad example, in which the abstract
state "Compressor ON" is introduced. Compared to the simple
state transition diagram, number of transitions is reduced by one
(improving ease of implementation), but five cross-hierarchical
transitions have been created. This causes its internal components to
directly affect the external components (decreasing modularity).

This shows that the descriptive quality differs greatly depending on
how abstract states are introduced. Therefore, a means to quantitatively
evaluate the hierarchy and point out the bad points will help designers
to write more quality hierarchical state machines.

Citation: Nakajima T, Takayama Y, Tokumoto S (2022) Design Support Based on Evaluation of Descriptive Quality of Hierarchical State Machines. Int J Comput
Softw Eng 7: 177. doi: https://doi.org/10.15344/2456-4451/2022/177

 Page 2 of 10

3. Existing Measures

This section describes existing measures of the descriptive quality
of hierarchical state machines and their problems.

Basic measures of hierarchical state machine

The following basic measures are used for the node (state) and edge
(state transition) of hierarchical state machines [3].

• State-related: Number of states, number of abstract states,
number of leaf states

• Transition related: Number of transitions, number of cross-
hierarchy transitions

These measures are measured directly by counting elements
appearing in the diagram, and easy to understand what they are.

Table 1 shows the results of measuring the base measures for the
examples in Figure 3a and Figure 3b, where number of crosshierarchy
transition is the total number of times across the boundary of the OR
states through which the state transition passes.

Figure 1: Original simple state transition diagram.

Figure 2: Two examples of hierarchical state machine equivalent to
Figure 1.

Base measure (a) Bad (b)Good

State related Number of states 5 5

Number of abstract states 1 1

Number of leaf states 4 4

Transition related Number of transitions 12 5

Cross-hierarchy transition 5 0
Table 1: Base measures and their values for Figure 3a and 3b.

https://doi.org/10.15344/2456-4451/2022/177

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 7. 2022. 177

In Table 1, the state-related measures have the same values in (a)
and (b), whereas the state transition related measures have larger
values in (a) than in (b). From this comparison, the hierarchical
state machine (b) has the smaller number of transitions and cross-
hierarchy transition, is considered to make better use of the hierarchy.

This example shows that the evaluation of the descriptive quality of
the hierarchical state machines using these base measures needs to be
performed by comparing multiple descriptions. This is because these
base measures depend on not only the descriptive complexity but
also that of the problem. Such evaluation by comparison is suitable
for evaluating the effect of refactoring, but it cannot be used for
evaluating a single hierarchical state machine.

Cyclomatic complexity of hierarchical state machines

(1) Cyclomatic complexity

Cyclomatic complexity is a measure for the complexity of a graph.
The cyclomatic complexity (CC) can be calculated for a single graph
by the following equation.

CC = E - N + 2
E: the number of edges
N: the number of nodes

Cyclomatic complexity is a measure for the complexity of a graph.
The cyclomatic complexity (CC) can be calculated for a single graph
by the following equation.

• Calculate CC as a branch point (IF statement, etc.) for a node
and as a control flow for an edge.

• Evaluate CC for each program unit such as a function.

C strongly depends on the complexity of the problem itself as
branches represent some kinds of decisions.

By evaluating CC per module, it can be used as an index showing
its quality. For example, the module has good quality if the CC per
module is 6 or less and is judged too complicated if it is 10 or more.
CC has been widely used as an index for module complexity showing
the ease of unit testing (and code inspection).

(2) Application of cyclomatic complexity to hierarchical state machines

Hall proposes to apply cyclomatic complexity to hierarchical state
machines as follows [5].

Citation: Nakajima T, Takayama Y, Tokumoto S (2022) Design Support Based on Evaluation of Descriptive Quality of Hierarchical State Machines. Int J Comput
Softw Eng 7: 177. doi: https://doi.org/10.15344/2456-4451/2022/177

 Page 3 of 10

1. Count states as nodes and state transitions as edges.
2. Evaluate CC for each hierarchy level.

To calculate the CC of the hierarchical state machines in Figure 2a
and 2b, we extract the state machines at the first are shown in Figure
4, and those at the second layer level is shown in Figure 3.

In Figure 4, transitions across hierarchies are counted at the
outermost hierarchy level. The initial state and history are not counted
as nodes, and the state transitions from the initial state and history are
not counted as edges.

Table 2 shows the values of CC for the state machines in Figure 3
and Figure 4.

In addition, since the evaluation is performed for each hierarchical
level, it seems that we can use the CC by layer as an index value
similarly to the CC by module: i.e., it can be used for keeping the CC
value of each layer under some criterion to incorporate hierarchy in a
well-balanced manner.

However, there are the following problems when applying it.

• Introducing many abstract states can simply reduce the
complexity of each layer. Since there is no penalty for
introducing them in vain, the quality of introducing the
abstract states themselves cannot be evaluated properly.

• The number of cross-hierarchy transitions that have an adverse
effect on modularity has not been evaluated.

• There is no consideration for AND states.

4. Requirements and Approaches

Requirements for the evaluation methods

To solve the problems of the existing measures, we set the following
four requirements for the method of evaluating the descriptive quality
of the hierarchical state machines.

Figure 3: The second layer of the two hierarchical state
machines in Figure 2.

Figure 4: The first layer of the two hierarchical state machines
in Figure 2.

Hierarchy level Cyclomatic complexity (CC)

First level (a) (b)

Second level 7 2

Cross-hierarchy transition 4 2
Table 2: Values of cyclomatic complexity for Figure 3 and Figure 4.

https://doi.org/10.15344/2456-4451/2022/177

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 7. 2022. 177

1. Goodness of the hierarchy for the hierarchical state machine
with AND states can be evaluated.

2. A single machine can be evaluated.
3. Only a small set of measures are used.
4. Information to improve them are given.

Approaches to meeting the requirements

As a set of measures for the descriptive quality of hierarchical
state machines to meet the above four requirements, we propose the
following two measures.

Es = Evaluation of states / State size (1)
Et = Evaluation of transitions / Transition size (2)

To satisfy requirement 1), we define two independent measures
to quantify hierarchy, “Evaluation of states” and " Evaluation of
transitions.” To satisfy requirement 2), we define two scale measures,
"State size" and "Transition size" to normalize the above two measures
into Es and Et so that we can evaluate them regardless of complexity
of the problem.

The fact that only two measures (Es and Et) are used satisfies
requirement 3). In fact, plotting the measured values on a scatter
diagram allows us to evaluate them as positions on a two-dimensional
plane. In addition, when Es is outside the proper region, meaning that
the hierarchy of states is bad, you can see what is wrong using the
state-related base measures in Table 1. The same is true for Et. This
means that requirement 4) will be satisfied.

5. Evaluation of Hierarchy

In this section, we propose two measures for evaluating the
hierarchy and describe the rationale for them.

Complexity on state

(1) Preparation

The hierarchical level L (X) of a certain state X is defined as follows:

• When X = U, L (U) = 0
• When X is an OR state, L (X) = L (SP (X)) + 1
• When X is an AND state, L (X) = L (SP (X))

where SP (X) is the parent state of X, and U is the universe state
consisting of all the states in the target machine. In this paper, U is
treated as the single top-level state, i.e., not enclosed by any state on
the state machine. When L(X)>L(Y), we say that the state hierarchy
level of X is lower than that of Y.

The state weight w (X) of a certain state X is defined as follows.

• When X = U, w (U) = 1
• When X is an OR state, w (X) = w (SP (X)) / noc (SP (X))
• When X is an AND state, w (X) = w (SP (X))

where noc (X) is the number of OR states directly under state X.

Citation: Nakajima T, Takayama Y, Tokumoto S (2022) Design Support Based on Evaluation of Descriptive Quality of Hierarchical State Machines. Int J Comput
Softw Eng 7: 177. doi: https://doi.org/10.15344/2456-4451/2022/177

 Page 4 of 10

The state weight represents the importance of each state in the
hierarchy. The OR decomposition of each hierarchical level is
considered to divide the space of the parent state into equal parts by
the number of the subordinate OR states. Therefore, the deeper the
hierarchy, the less the weight.

On the other hand, the weights of the AND states are set to be the
same as that of the parent state, considering that it is inherited from
the parent state. Figure 5 shows an example of the weight calculation
results.

(2) Definition

The state hierarchical complexity Cs of a certain hierarchical state
machine is recursively defined using the hierarchical complexity Cs
(X) of the state X.

• Cs = Cs (U)
• For state X, if the set of child states Sub (X) = {X1, X2, ..., XN},

then the state hierarchy complexity Cs (X) of X is:
 ➢ When Sub (X) = ø, Cs (X) = 0
 ➢ When N>0 and the elements of Sub(X) are OR states,

 ➢ When N>0 and the elements of Sub(X) are AND states,

In other words, the state hierarchical complexity Cs (X) is calculated
by multiplying the number of divisions (OR decomposition) of the
state X by the state weight and summing them up.

(3) Design rationales

The state hierarchy complexity Cs(X) is defined as the state
complexity for measuring the modularity of the hierarchical state
machine. The design rationales are shown below.

1. The complexity of state X is considered proportional to the
number of OR states of X. Therefore, Cs (X) increases when
adding OR states directly under X.

2. By adding the OR state to the state X, the complexity of the
state X increases by the weight of X. As a result, the complexity
increment at deeper hierarchies is smaller. This is because the
introduction of the abstract state is considered to have the effect
of limiting the scope of attention and increasing the modularity.
State weights are used to reflect this point.

Figure 5: Example of state weights.

N

i=1
(X) (N-1)w(X) (Xi)S SC C= +∑

N

i=1
(X) (Xi)S SC C=∑

https://doi.org/10.15344/2456-4451/2022/177

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 7. 2022. 177

3. Unlike the OR decomposition, because the AND decomposition
does not create a subset group of the parent states, AND states
directly under the state X inherits the same weight of the state X
and simply adding an AND state to state X does not increase its
complexity

(4) Verification by examples

The state hierarchy complexities for three examples (in Figure 1 and
Figure 2a and Figure 2b, which have the same behavior, are:

Cs(Fig.1)=(noc(U)-1)∙w(U)=(4-1)∙1=3
Cs(Fig.2(a))=(noc(U)-1)∙w(U) + Cs(compressor operating)
 =(3-1)∙1 + (noc(compressor operating)-1)∙

w(compressor operating)
= 2+(2-1)∙0.33=2.33
Cs(Fig.2(b))=(noc(U)-1)∙w(U)+Cs(ON)=(2-1)∙1+
 (noc(ON)-1)∙w(ON)=1+(3-1)∙0.5=2.0

The example in Figure 1, which is a simple state transition diagram,
has the largest Cs value of 3. That in Figure 2a, which is a bad example
of hierarchal state machine, has the second largest of 2.33. That in
Figure 2b, which is a good example of hierarchal state machine, has
the smallest of 2.0. It indicates that Cs evaluates that the smaller the
number of states in the upper layer, the lower the complexity.

(5) Analysis on range of Cs

Consider a simple state transition diagram with N states, assuming
that there are two or more OR states at the highest level of the hierarchy.
In this case, the minimum value of the state hierarchy complexity Cs
is 1. Therefore, the range of the state hierarchy complexity Cs is as
follows:

1 ≤ Cs < Number of states when reduced (3)

In other words, the lower limit of the state transition complexity is a
fixed value of 1, and the upper limit depends on the specification size.

Complexity on transition

(1) Definition

State transition complexity Ct is defined as follows:

Ct = Number of transitions +
 Number of cross-hierarchy transitions (4)

where number of transitions is counted only for state transitions
whose transition source is an OR state, not including the transitions
whose source is the initial state or history.

(2) Design rationales

State transition complexity is the complexity on transition to
measure the balance between ease of implementation and modularity
in hierarchical state design. It quantifies the following positive and
negative effects caused by hierarchy:

• Reduction of number of transitions (positive effect on ease of
implementation)

Citation: Nakajima T, Takayama Y, Tokumoto S (2022) Design Support Based on Evaluation of Descriptive Quality of Hierarchical State Machines. Int J Comput
Softw Eng 7: 177. doi: https://doi.org/10.15344/2456-4451/2022/177

 Page 5 of 10

• Increase in number of cross-hierarchy transitions (negative
effect on modularity)

Modularity in OR decomposition is the degree to which abstract
states are structured so that changes does not affect beyond their
boundaries. This is achieved by localization of events, variables, and
state transitions within the hierarchy level. The higher the modularity,
the less the dependency between layers. In addition, it becomes easier
to verify the entire specification by stepwise inspection on each level.
Cross-hierarchy transitions impair this modularity.

(3) Verification by examples

The state transition complexities for three examples (in Figure 1
and Figure 2 (a) and (b)), which have the same behaviour, are:

Ct(Fig.1) = 13+0=13
Ct(Fig.2(a)) = 12+5=17
Ct(Fig.2(b)) = 5+0=5

The state transition complexity Ct for Figure 2a is 17, which is an
increase of 4 points from 13 for Figure 1. This is because the increase
of 5 in number of cross-hierarchy transitions exceeds the decrease of
1 in number of transitions.

On the other hand, the state transition complexity Ct of hierarchy
Figure 2b is 5, which is 8 points less than 13 for Figure 1. Since the
increase in number of cross-hierarchy transitions is 0, the decrease
in number of transitions of 8 is simply evaluated as a decrease in the
complexity.

This shows that number of transitions decreases because many
of them are integrated when the hierarchy is good, and number of
cross-hierarchy transitions increases when it is bad. In other words,
the state transition complexity Ct is a measure that balances positive
effect on ease of implementation and negative effect on modularity
due to introduction of abstract states.

In addition, state hierarchy complexity Cs of a machine can be
reduced to some smallest value without considering occurrence of
cross-hierarchy transitions, but it may cause the increase of state
transition complexity Ct. State transition complexity allows us to
evaluate such negative aspects of introducing abstract states.

(4) Analysis on range of Ct

Since Ct is the sum of number of transitions and number of cross-
hierarchy transitions. The number of transitions does not exceed that
in the equivalent simple state transition diagram, and the maximum
of the number of cross-hierarchy transitions is proportional to it. In
other words, the upper and lower limits of Ct depend on the size of
the specification.

Scale measures for normalization

As mentioned in the previous subsections, defined measures: state
hierarchy complexity Cs and state transition complexity Ct increase
with the scale of the specification. Therefore, they cannot be used
for evaluating the descriptive quality of a single hierarchical state
machine yet.

https://doi.org/10.15344/2456-4451/2022/177

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 7. 2022. 177

To solve this problem, we propose two scale measures for
normalization of state hierarchy complexity and state transition
complexity, state size Ns and transition size Nt.

Ns: number of OR states without hierarchy
Nt: number of transitions without hierarchy

Ns and Nt are the number of states and the number of transitions,
respectively, for the equivalent simple state transition diagram
excluding abstract states.

Transforming from a state machine to the one without hierarchy
is equivalent to unfolding abstract states and AND states in the
machine. The methods for them are described below. They are applied
repeatedly until all the abstract states are taken away and all the AND
state reaches the highest level.

(1) Method for unfolding abstract states

The method for removing an abstract state is shown below:

1. For all the transitions outgoing from the abstract state, expand
each transition as transitions outgoing from all the subordinate
states.

2. For all the transitions incoming to the abstract state, change the
destination of each transition to the initial state.

3. Remove the abstract state.

The state machine on the right in Figure 6 is the result of deleting
abstract state ON from the one on the left. First, the state transition
from ON to OFF is duplicated and expanded to each of the subordinate
states (Cooling, Heating, and Fan only), and the state transitions
transitioning from ON to the subordinate states are duplicated and
expanded to each of the subordinate states (S1). Next, since the state
transition from OFF transitions to the initial state, in this case the
cooling state (S2). After that, ON is deleted (S3).

The figure on the right of Figure 7 is the state machine without
hierarchy, and its number of states Ns is 4 and its number of transitions
Nt is 13.

(2) Method for unfolding AND states

The method for moving an abstract state which have a set of AND
states to one level higher layer of the OR hierarchy as follows:

Citation: Nakajima T, Takayama Y, Tokumoto S (2022) Design Support Based on Evaluation of Descriptive Quality of Hierarchical State Machines. Int J Comput
Softw Eng 7: 177. doi: https://doi.org/10.15344/2456-4451/2022/177

 Page 6 of 10

S1) For all the transitions outgoing from the abstract state, expand
 each transition as transitions outgoing from all the subordinate
 states.
S2) For all the transitions incoming to the abstract state, change the
 destination of each transition to the initial state.
S3) Expand the transitions from the abstract state to the OR states
 (originally outside of the abstract state) to ones from all the OR
 states in each AND state to the duplicated OR state (also in there).

In the example of Figure 8, S1) state A, which is outside abstract
state B (having two AND states) is duplicated into the two AND
states as A1 and A2, and the original A is deleted. Next, S2) the state
transition from A to B expands to the state transition from A1 to C
and from A2 to E as certain states respectively. Finally, S3) the state
transition from B to A expands to the state transition from C and D to
A1 and from E and F to A2.

Like the method for unfolding abstract states, the method
for unfolding AND states also increases number of transitions.
Furthermore, since the OR states are duplicated and expanded to each
AND state, number of states also increases. In the example shown in
Figure 9, Ns = 6 and Nt = 10.

As a method of unfolding AND states, it is common to replace
them with the result of the product of a set of OR states included in
each AND state. However, the proposed measures focus on evaluating
the hierarchy of a hierarchical state machine. Therefore, this method
is adopted to treat the effect of parallelism equally on all machines.
The results of this method, which aggregates AND divisions into the
highest layer, are the same as object divisions, which means that it can
be applied to object-oriented modelling.

Based on the state hierarchy complexity Cs, state transition
complexity Ct, state size Ns, and transition size Nt defined so far, two
measures for the descriptive quality of hierarchical state machines Es
and Et are defined as follows.

Figure 6: Scatter plot f Es and Et for the three problems with criteria.

Figure 7: Example of unfolding an abstract state.

Figure 8: Example of unfolding AND states.

https://doi.org/10.15344/2456-4451/2022/177

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 7. 2022. 177

 Es = (Cs – 1) / Ns (5)
 Et = Ct / Nt (6)

where Cs is subtracted by 1 to make the minimum value of Es 0
because the minimum value of Cs is 1.

Table 3 shows the measured values of Es and Et of state machines in
Figure 1 and Figure 2a and 2b.

6. Experimental Evaluations

Purpose of experiment

In order to confirm whether the proposed method satisfies the
requirement for descriptive quality evaluation methods 2) of "a single
machine can be evaluated," it is necessary to check whether quality
criteria that do not depend on the size and type of the problem can be
set for the two measures. Therefore, the following research questions
are set and evaluated experimentally.

Approaches to satisfying the requirements

To satisfy R1 and R5, we have implemented the tool as a C# add-in
for Enterprise architect (EA) [6], a UML tool with hierarchical state
transition diagram editing capabilities. This allows us to check the
descriptive quality of the target diagram during its editing process,
to improve it, and to see the effect of the improvement immediately.

RQ1. Do the description samples of different problems have an
unbiased distribution?

RQ2. Is it possible to set effective quality criteria based on past data?

Experimental method

For the above purposes, we prepared three problems and multiple
subjects to solve each of them. Table 4 shows problems used in the
experiment, subjects of the experiment, problem size, and number of
samples.

The description experiments on air conditioner, automobile, and
online shopping were conducted in the classes of graduate students
in different years. In these classes, we first taught the grammar and
description examples of the hierarchical state machine and then the
problems were given to the students as their assignments. To reduce
misinterpretations risks about the problems as much as possible, the
corresponding test cases are distributed, and their machines were
reviewed in classes, which the students corrected resubmitted them.

Even so, those that did not meet the specifications and/or had
grammatical mistakes were corrected by hand, trying not to change
any hierarchical structure of the machines. Those that absolutely
need to change the hierarchical structure due to the modification are
excluded from the samples.

Citation: Nakajima T, Takayama Y, Tokumoto S (2022) Design Support Based on Evaluation of Descriptive Quality of Hierarchical State Machines. Int J Comput
Softw Eng 7: 177. doi: https://doi.org/10.15344/2456-4451/2022/177

 Page 7 of 10

Experiment results

Figure 6 plots Es and Et as a scatter plot for the three problems."

The following results are obtained.

• All data groups are plotted in a modest area of the graph with
little scale bias.

• For air conditioner and automobile, which have five to seven
samples, Es is 0.08 to 0.50 and 0.16 to 0.57, and Et is 0.46 to 1.09
and 0.88 to 1.14, respectively.

• Automobile, which have a larger size of specifications
(measured by number of sates and number of transitions) than
air conditioner, has a narrower range of Et variation. On the
other hand, online shopping, which has almost the same size
of specifications as automobile has a wider range of Et of 0.69
to 0.96. This means that the difference in the distribution of the
data groups is not due to the size of the problem. For example,
automobile is the problem of highly independent object
decomposition: i.e., subjects tend to select parallelism in their
modelling. It can be inferred that the distribution of the data
group depends on the degrees of freedom in modelling on the
problems.

From the above results, we find that there is a possibility that the
quality of the hierarchy of a single hierarchical state machine can be
evaluated as the absolute position on the two dimensional plane by
the proposed measures, regardless of its problem size. This allows us
to evaluate it without comparison.

Setting specific criteria

In order to get the answer to RQ2 " Is it possible to set effective
quality criteria based on past data?", We examined to set criteria for
the two proposed measures to properly evaluate the sample data
shown in 6.2.

(1) Criteria for the descriptive quality measure on transitions

The following criterion can be used for t the descriptive quality
measure on transitions Et.

Et ≤ 1.0

The rationale is that since Et has number of transitions for the "state
machine without hierarchy" as its denominator, the value of 1.0 is the
situation in which a merit of reduction in number of transitions and a

Measure Figure 1 Figure 2a Figure 4b

Es 0.5 (= (3-1)/4) 0.33 (= (2.33-1)/4) 0.25 (= (2-1)/4)

Et 1.0 (= 13/13) 1.3 (= 17/13) 0.71 (= 5/13)
Table 3: Values of Es and Et of state machines in Figure 1 and Figure
2a and 2b.

Problem Subject Problem size
(Average)

of
samples

NOS NOT

Air
conditioner

graduate students,
instructor

22.2 31.0 5

Automobile graduate students,
instructor

40.1 62.7 7

Online
shopping

student (who makes the
problem), instructor

33.0 60.5 2

Table 4: Subjects of the experiments.

https://doi.org/10.15344/2456-4451/2022/177

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 7. 2022. 177

demerit of emerging number of cross-hierarchy transitions are offset.
If the measured value is more than 1.0, the state machine is considered
to rather have worse quality than the one without hierarchy.

(2) Criteria for the descriptive quality measure on states

The following criterion can be used for t the descriptive quality
measure on states Es.

Es ≤ 0.4

Unlike Et, there is no theoretical basis for this criterion, and the
value of 0.4 is a tentative value based on the sample data. The rationale
comes from only the fact that the samples with Es of 0.4 or more have
a characteristic that AND states existside by side at the highest level
and almost no hierarchy is used, which is not seen in the samples with
Es less than 0.4.

It is thought that the application of this criterion has the effect of
discouraging the easy use of AND decomposition and encouraging
the application of OR decomposition to first extract commonality
such as ON / OFF. As the number of data increases, it can be expected
that a more appropriate criterion for judging the quality of hierarchy
can be obtained.

Figure 6 shows that the scatter plot is divided into four regions
by the above two criteria. If the criteria are appropriate, data in each
region can be interpreted in the followings:

• Et ≤ 1.0 and Es ≤ 0.4, good quality

• Et ≤ 1.0 and Es > 0.4, bad quality in hierarchy on states

• Et > 1.0 and Es ≤ 0.4, bad quality in hierarchy on transitions

• Et > 1.0 and Es > 0.4, bad quality in hierarchy on both states and
transitions

Analysis on the proposed measures

Since Ns ≥ Cs and Nt ≥ Ct, the proposed method uses Ns and Nt as
the denominator for normalization. Es and Et differ in what they can
evaluate by the normalization.

Es = (Cs-1) / Ns: Since Cs and Ns are based on the same specifications,
this normalization makes Es a numerical value in the range of 0 to 1
regardless of the problem size. If an appropriate criterion can be set
for Es, it can be used to judge the quality of the hierarchy on states of
an individual state machine.

Citation: Nakajima T, Takayama Y, Tokumoto S (2022) Design Support Based on Evaluation of Descriptive Quality of Hierarchical State Machines. Int J Comput
Softw Eng 7: 177. doi: https://doi.org/10.15344/2456-4451/2022/177

 Page 8 of 10

Et = Ct / Nt: Since Ct is "number of transitions + number of cross-
hierarchy transitions", the normalization enables judging whether and
how much the decrease in number of transitions or the increase in
number of cross-hierarchy transitions is larger by using the criteria
of 1.0. This is because the distance between Et and the criterion of 1.0
does not depend on the problem size.

As described above, the proposed method can evaluate the
descriptive quality of hierarchical state machines with an appropriate
set of criteria for Es and Et.

7. A Design Tool Using the Proposed Measures

Requirements for the design support tool

With the aim of supporting better design of hierarchical state
machines, we developed a design support tool that implements the
two proposed measures. We defined the following requirements for
the tool:

R1 The tool shall be able to run seamlessly while editing hierarchical
state transition diagrams.

R2 The syntactic correctness of the output is not too strictly required.

R3 The descriptive quality of the target diagram shall be judged pass/
fail.

R4 Guidance for the improvement shall be provided.

R5 The descriptive quality shall be able to be evaluated immediately
after the improvement.

Approaches to satisfying the requirements

To satisfy R1 and R5, we have implemented the tool as a C# add-in
for Enterprise architect (EA) [6], a UML tool with hierarchical state
transition diagram editing capabilities. This allows us to check the
descriptive quality of the target diagram during its editing process,
to improve it, and to see the effect of the improvement immediately.

As shown in Figure 9, the tool consists of the following six major
functional parts.

1. Extract logical data: Logical information (inclusion relations
among states and graph structure by states and state
transitions) is extracted from the hierarchical state machine
data in the EA using the EA API.

The proposed measures (and the other basic measures) can
be computed from this information alone and are therefore
insensitive to errors other than inclusion relations and graph
structure. This satisfies R2.

2. Calculate Cs and Ct: Cs and Ct are calculated based on 5.1 and
5.2, respectively.

3. Calculate scale measures: A non-hierarchical state machine is
created to calculate two size measures Ns and Nt from it based
on 5.3.

4. Normalize measures: Es and Et are calculated based on
equation 4 and 5, respectively.

5. Base measurement: Base measures for states and transitions
are calculated.

− −

Figure 9: System structure of the design support tool.

https://doi.org/10.15344/2456-4451/2022/177

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 7. 2022. 177

6. Display values of measures: The results of 5) and 6) are
summarized and presented to the designer. Figure 10 shows an
example of the information provided by the tool.

8. Related Works

There are various factors in the complexity of hierarchical state
machines. Beldjehem [7] provides three categories of complexity
in hierarchical state machines: computational, psychological, and
expressive, and further enhances psychological complexity into
problem-specific, cognitive, and structural ones. They recommend
that these complexities be treated separately. Our proposed method
defines a measure that makes it possible to measure the structural
complexity and separates it from the effects of problemspecific one by
introducing scale normalization.

There have also been several studies to relate the readability
of hierarchical state machines to a set of base measures of their
descriptive elements. Miranda et al. [8] experimentally show that
there is a correlation between number of actions, number of states,
and number of transitions in a hierarchical state machine and how
long it takes for readers to understand it. Cruz-Lemus et al. [9]
evaluated the effect of abstract states on readers' comprehension in
hierarchical state machines by large-scale experiments, whose results
show that the use of abstract states improves readability. Fonte et al.
[10] propose a prediction formula for the complexity of hierarchical
state machines using a linear equation of number of transitions,
number of state transitions divided by number of states, and depth of
states, and they conducted an experiment to determine its parameters.
However, these studies do not separate and assess problem-specific
complexities.

Citation: Nakajima T, Takayama Y, Tokumoto S (2022) Design Support Based on Evaluation of Descriptive Quality of Hierarchical State Machines. Int J Comput
Softw Eng 7: 177. doi: https://doi.org/10.15344/2456-4451/2022/177

 Page 9 of 10

Abadi et al. [11] have proposed refactoring patterns for five types
of methods: grouping, merging, extraction, pulling, and composition,
as methods for improving the description quality of hierarchical
state machines. It can be used to improve hierarchical state machines
diagnosed as having poor descriptive quality.

9. Conclusion and Future Issues

In this paper, we proposed a method and tool to evaluate the
descriptive quality of hierarchical state machines. This method
defines a set of two measures, which are normalized using complexity
measures and scale measures from two viewpoints: state and
transition. This enables us to evaluate that of an individual machine
independently. The tool support designer to create quality hierarchical
state machines.

From descriptive experiments, we found that the proposed method
may have a small bias in the distribution of measured values for
problems of different types and sizes and certain criteria can be set to
evaluate a single hierarchical state machine individually.

As a future task, since the number of samples for each of the
problems is not large enough, more samples need to be collected to
evaluate the effectiveness of this method and tool, and to determine
a set of appropriate criteria for the two measures. It is also necessary
to apply this method to many actual developments to show that it
is useful for improving the descriptive quality of hierarchical state
machines.

Competing Interests

The authors declare that they have no competing interests.

Figure 10: An example of displayed information of the design support tool.

https://doi.org/10.15344/2456-4451/2022/177

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 7. 2022. 177

References

1. Harel D (1987) Statecharts: A visual formalism for complex systems, Science
of Computer Programming 8: 231-274.

2. OMG® Unified Modeling Language (OMG UML) Version 2.5.1.

3. Genero M, Miranda D, Piattini M (2002) Defining and validating metrics for
UML statechart diagrams, Proceedings of QAOOSE 2002.

4. McCabe TJ (1976) A Complexity Measure, IEEE Transactions on Software
Engineering 2:308-320.

5. Hall, M.: Complexity Metrics for Hierarchical State Machines, SSBSE 2011,
LNCS-6956, pp. 76–81 (2011).

6. Beldjehem M (2013) A granular hierarchical multiview metrics suite for
statecharts quality, Advances in Software Engineering 2013: 952178.

7. Enterprise architect: full lifecycle modelling for business, software and
system: (referenced 2022-4-29).

8. Miranda D, Genero M, Piattini M (2005) Empirical validation of metrics
for UML statechart diagrams, Enterprise Information Systems V, Springer,
Dordrecht, pp. 101-108 .

9. Cruz-Lemus JA, Genero M, Manso ME, Piattini M (2005) Evaluating the effect
of composite states on the understandability of UML statechart diagrams,
International Conference on Model Driven Engineering Languages and
Systems, Springer, Berlin, Heidelberg, pp. 113-125.

10. Fonte D, Boas IV, e Azevedo J, ́e Jo ão Peixoto J, Faria P, et al. (2012)
Modeling Languages: metrics and assessing tools.

11. Abadi M, Feldman YA (2009) Refactoring of Statecharts, Next Generation
Information Technologies and Systems, pp.50-62.

Citation: Nakajima T, Takayama Y, Tokumoto S (2022) Design Support Based on Evaluation of Descriptive Quality of Hierarchical State Machines. Int J Comput
Softw Eng 7: 177. doi: https://doi.org/10.15344/2456-4451/2022/177

 Page 10 of 10

https://doi.org/10.1016/0167-6423%2887%2990035-9
https://doi.org/10.1016/0167-6423%2887%2990035-9
https://www.omg.org/spec/UML/2.5.1/PDF/
https://doi.org/10.1155/2013/952178
https://doi.org/10.1155/2013/952178
https://sparxsystems.com/products/ea/index.html
https://sparxsystems.com/products/ea/index.html
https://doi.org/10.1007%252f1-4020-2673-0_12
https://doi.org/10.1007%252f1-4020-2673-0_12
https://doi.org/10.1007%252f1-4020-2673-0_12
https://doi.org/10.1007/11557432_9
https://doi.org/10.1007/11557432_9
https://doi.org/10.1007/11557432_9
https://doi.org/10.1007/11557432_9
http://wiki.di.uminho.pt/twiki/pub/Education/EL/SumariosEG10/inforum2011_submission_89.pdf
http://wiki.di.uminho.pt/twiki/pub/Education/EL/SumariosEG10/inforum2011_submission_89.pdf
https://link.springer.com/chapter/10.1007/978-3-642-04941-5_7
https://link.springer.com/chapter/10.1007/978-3-642-04941-5_7
https://doi.org/10.15344/2456-4451/2022/177

