
Abstract

GPUs (Graphics Processing Units) are microprocessors attached to graphics cards dedicated to the
display and manipulation of graphics data. In a few years, these microprocessors (GPUs) have occupied
all modern graphics cards and become very important tools for massively parallel computing. These
processors are practical tools for the development of several areas such as image processing, video and
audio coding and decoding, solving a physical system with one or more unknowns... Their advantages:
faster processing and lower energy consumption than the power of the central processing unit (CPU).
In this paper, we will define and implement the Lagrange interpolation method on GPU and CPU to
compute the density of a metal at different Ti temperatures using the CUDA C parallel programming
model from NVIDIA which is used to increase the computational performance by exploiting the power of
the GPU. Our goal is to compare the performance of the Lagrange interpolation method implementation
on CPU and GPU processors and to infer the efficiency of using GPUs for parallel computing.

Comparative Study of the Performance of the Lagrange Implementation
on GPU and CPU Using CUDA

Publication History:

Received: May 31, 2021
Accepted: June 28, 2021
Published: June 30, 2021

Keywords:

GPU, CPU, CUDA, Lagrange
Interpolation, Parallel computing

Research Article Open Access

Inroduction

The main purpose of interpolation is to interpolate known data
from discrete points. In this case, the value of the function between
these points can be estimated. This estimation method can be
extended and used in various domains; namely the derivation and
numerical integration of polynomials. Lagrange interpolation [6,12]
is a method which allows to interpolate the different data points like
the temperature of each point, in order to calculate some physical
quantities. When the number of points increases the calculation
becomes more and more difficult to solve by the central processing
unit (CPU) in terms of speed of execution and rapidity, that's why we
need processors that treat these physical problems in a very efficient
way and minimizes the time of execution these processors are called
graphic processing units (GPU). CUDA, as a high-level language,
has changed the whole perspective of GPU programming. It has
reinforced interest accelerating tasks usually performed by general-
purpose processors GPUs. Despite these languages, it is difficult to
exploit these complex architectures efficiently. This problematic
endeavor is mainly because of the rapid evolution of graphics cards;
that is, each generation brings its share of new features dedicated
to high-performance computing acceleration. The details of these
architectures remain secret because of the manufacturers' reluctance
to disclose their implementations. These new features added to GPUs
result from manufacturers simulating different architectural solutions
to determine their validity and performance. The complexity and
performance of today's GPUs present significant challenges for
exploring new architectural solutions or modeling certain parts of
the processor. Currently, GPU computing is growing exponentially,
including processing mathematical algorithms in physics such as
Lagrange interpolation [6,12], physics simulation [8], risk calculation
for financial institutions, weather forecasting, video and audio
encoding [1]. GPU computing has brought a considerable advantage
over the CPU in terms of performance (speed and energy efficiency).
Therefore, it is one of the most interesting areas research and

*Corresponding Author: Dr. Youness Rtal, Department of Physics, Laboratory
of Electronic Systems, Information Processing, Mechanics and Energy, Faculty of
Sciences, Ibn Tofail University, Kenitra, Morocco; E-mail: youness.pc4@gmail.com

Citation: Rtal Y, Hadjoudja A (2021) Comparative Study of the Performance of the
Lagrange Implementation on GPU and CPU Using CUDA. Int J Comput Softw Eng
6: 166. doi: https://doi.org/10.15344/2456-4451/2021/166

Copyright: © 2021 Rtal et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

development in modern computing. The GPU is a graphics processing
unit that mainly allows us to execute high-level graphics, which is the
demand of the modern computing world. The GPU's main task is to
calculate 3D functions; these types of calculations are very complex to
perform on the CPU (central processing unit).

The evolution of the GPU over the years aims towards a better
floating-point performance.

CUDA architecture has multiple processor cores that work together
to consume all the data provided in the application. The processing of
non-graphical objects on GPUs is known as GPGPU, which allows for
very complex mathematical operations to be performed in parallel to
achieve the best performance. The arithmetic power of the GPGPU is
the result of its specialized computing architecture [3,9].

This paper will define and implement the Lagrange interpolation
method that interpolates the temperature of sodium Na at different
points to calculate the density at each temperature Ti. For this we use
GPU and CPU processors and the CUDA C programming language
from Nvidia. The objective of this study is to compare the performance
of implementation of the Lagrange interpolation method on CUDA
and GPU processors and conclude the efficiency of using GPUs for
parallel computing.

International Journal of
Computer & Software Engineering

Youness Rtal* and Abdelkader Hadjoudja
Department of Physics, Laboratory of Electronic Systems, Information Processing, Mechanics and Energy, Faculty of Sciences, Ibn Tofail University,
Kenitra, Morocco

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 6. 2021. 166

 Rtal et al., Int J Comput Softw Eng 2021, 6: 166
 https://doi.org/10.15344/2456-4451/2021/166

Special Issue: Internet of Things

Abbreviations

CPU: Central Processing Unit, GPU: Graphical Processing Unit, CUDA: Compute Unified Device Architecture

https://doi.org/10.15344/2456-4451/2021/166
https://doi.org/10.15344/2456-4451/2021/166

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 6. 2021. 166

The upcoming sections of this paper is as the following: in section
2, we present the CUDA architecture and the steps to be taken to
write the code in CUDA C. In section 3, we will define the Lagrange
interpolation method to solve our problem. In section 4, we will
present the material used and the results of this implementation.

CUDA Architecture and the Hardware Used

The CUDA environment is a parallel computing platform
and programming model invented by NVIDIA [4]. It allows to
significantly increase computing performance by exploiting the
power of the graphics processing unit (GPU). CUDA C or C ++ is
an extension of the C or C ++ programming languages for general
computing. CUDA is well adapted and efficient for highly parallel
algorithms. It is necessary to have multiple threads to increase the
performance of the algorithms while running on the GPU. The higher
the number of threads, the better the performance. The main idea of
CUDA is to have thousands of threads running in parallel. All these
threads execute the same code, called the kernel. All these threads
are executed using the similar instructions and different data. Each
thread knows its ID address, and based on this own ID address, it
determines the data elements it has to treat. [7] A CUDA program
consists of a few steps executed on the host (CPU) or a GPU device.
In the host code, the implementation of the data parallelism phases in
non-existent. In some cases, data parallelism is weak in the host code.
In the device code, phases with high data parallelism are executed. A
CUDA program is a unified source code that includes both the host

Citation: Rtal Y, Hadjoudja A (2021) Comparative Study of the Performance of the Lagrange Implementation on GPU and CPU Using CUDA. Int J Comput Softw
Eng 6: 166. doi: https://doi.org/10.15344/2456-4451/2021/166

 Page 2 of 4

and device code. The host code is a simple C code compiled using only
the standard C compiler. It can be said to be an ordinary CPU process.
The device code is written using CUDA keywords for parallel tasks,
called kernels and their associated data structures. In some cases,
kernels can be run on the CPU if no GPU device is available, but this
functionality is provided using an emulation function. The CUDA
SDK provides these features. The CUDA architecture consists of three
essential parts, which help the programmer to efficiently use all the
computing capabilities of the graphics card on the system in question.
The CUDA architecture divides the GPU device into grids, blocks,
and threads in a hierarchical structure, as shown in Figure 1. Since
there are several threads in a block and, several blocks in a grid and
several grids in a single GPU, the parallelism with such a hierarchical
architecture is very crucial [2,5].

A grid is a group of many threads running the same kernel. These
threads are not synchronized. Each call to CUDA from the CPU is
made through a single grid. On multi-GPU systems, grids cannot be
shared between different GPUs as they use many grids for maximum
efficiency. The grids are made up of many blocks. Each block is a
logical unit containing several coordination threads and a certain
amount of shared memory. The blocks are no longer shared between
the multiprocessors. Each block in a grid uses the same program.
A built-in variable, "blockIdx", can be used to identify the current
block. Blocks themselves are made up of many threads that run on
the individual cores of multiprocessors, but unlike grids and blocks,
they are not limited to a single core; there are around 65,535 blocks in

Figure 1: Architecture of the CUDA program and these memories.

https://doi.org/10.15344/2456-4451/2021/166

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 6. 2021. 166

a GPU. Like blocks, each thread has its ID called "threadIdx". Thread
IDs can be 1D, 2D, or 3D, depending on the block dimensions. The
thread ID is relative to the block in which it is located. Threads have
a certain amount of registered memory [10,11]. Usually, there can be
512 threads per block.

The platform used in this study is a conventional computer
dedicated to video games and equipped with an Intel Core 2 Duo
E6750 processor and an NVIDIA GeForce 8500 GT graphics card. All
specifications for both platforms are available in [13,14].

The processor is a dual core, clocked at 2.66 GHz and considered
entry-level in 2007.

The graphics card has 16 streaming processors running at 450MHz
and was also considered entry-level in 2007.

In terms of memory, the host has 2 GB, while the device has only
512 MB.

To write the program in CUDA C, you need to follow the following
steps:

1. Write the program code in C / C ++.
2. Edit program written in CUDA parallel code using library

functions provided by SDK, this library allows copying data from
host to device and vice versa.

3. Allocate and enter data into CPU memory.
4. Allocate the same amount of GPU memory using the

"CudaMalloc" library.
5. Copy the data to the GPU memory using the "CudaMemCpy"

library with the "CudaMemcpyHostToDevice" procedure.
6. Process data in GPU memory using kernel calls. Kernel calls is a

way to transfer this data from the CPU to the GPU by specifying
the number of grids, blocks and threads.

7. Copy the final data into the processor memory using the
CudaMemCpy library with the "CudaMemcpyDeviceToHost"
procedure.

8. To Free up memory from GPUs or other threads using the
"Cudafree" library [10].

The Lagrange Interpolation Method and the Code to
Implement

Let be n+1 real xi discrete points and n+1 real y1there is a single
polynomial p Pn such as p(xi)= yi for i= 0 à n the construction of p is :

 (1)

With Li represents a Lagrange polynomial [6] where:

 (2)

Lagrange polynomial (2) depends on xi and has the following
properties:

Citation: Rtal Y, Hadjoudja A (2021) Comparative Study of the Performance of the Lagrange Implementation on GPU and CPU Using CUDA. Int J Comput Softw
Eng 6: 166. doi: https://doi.org/10.15344/2456-4451/2021/166

 Page 3 of 4

the error produced ϕ(x) in the Lagrange interpolation can be useful
to control the quality of the approximation [6]. If f is n+1 derivable on
[a,b], x [a,b] we note:

1. I the smallest closed interval containing x and the xi

2. ϕ(x)= (x-x0) (x-x1)... (x-xn)

So, there are such as:

 (3)

In this paper, we will use formula (2) to interpolate the temperature
of sodium at different points. The main objective of this Lagrange
interpolation is to calculate the Ri density and implement these results
on GPU and CPU processors using CUDA C in order to compare
the performance of the implementation, Table 1 below represents the
sodium densities in some Ti temperatures.

From the data in the Table 1 the number of points is equal to 3, then
the Lagrange polynomial (1) will be of degree 2. This polynomial is
written:

 (4)

The list below represents the Lagrange polynomial interpolation
algorithm program to be implemented on GPU and CPU processors
using CUDA C to compute formula (4) at different temperatures Ti

T = [94, 205, 371];
R =[929, 902, 860];
Ti = a;
Ri = lag(T, R, Ti)
function Ri = lag(T, R, Ti)
Ri = zeros(size(Ti));
n = length(R);

 for i = 1 to n
 z = ones(size (Ti));
 for j = 1 to n,j≠i;
 z = z.✳ (T-Tj)/(Ti-Tj);
 end
 Ri= Ri + z ✳ R(i)
end

Results and Discussion

The measurements are made over the execution time of the
implementation of the Lagrange interpolation method to calculate
the density at different temperature points Ti. The unit of measure for
execution time is milliseconds.

The performance of the program implementation written in CUDA
C of the Lagrange interpolation on GPU and CPU processors to
calculate Ri at different temperatures are grouped in Table 2:

∈

0
() ()n

i ii
p x y L x

=
=∑

0;

()
()

()
n j

i j i j
i j

x x
L x

x x= ≠

−
=

−∏

i j

1
L (X) , 0,.., .

0 otherwise
i j

i j n
=

= =

∀ ∈

Iξ ∈

(1) ()() ()
(1)!

e x x

Point i 1 2 3

Temperature T (in °C) 94 205 371

Density R(T) (in kg/m3) 929 902 860
Table 1: Sodium densities at different temperatures.

1 1,

()
() ().

()
nn j

ii j j i
i j

T T
R T R T

T T= = ≠

−
=

−∑ ∏

https://doi.org/10.15344/2456-4451/2021/166

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 6. 2021. 166

The results grouped in Table 2 show the execution time on both
CPU and GPU. It is noticeable that when the temperature increases,
the Ri density decreases and the execution time on the CPU is
greater than the execution time on the GPU. The results of this
implementation can be explained by the fact that the CPU process the
data sequentially (task by task), while the GPU processes the data in
parallel (several tasks simultaneously), which implies the efficiency of
the GPU processors for parallel computing.

In parallel computing, the Speed Up gives an idea about the
execution speed of a parallel algorithm compared to a sequential
algorithm. In our case Speed up = execution time on CPU / execution
time on GPU. Table 2 shows that the speed up of this implementation
is 32.28, this value depends on the execution time on GPU and CPU
and the error defined in algorithm (3). This shows that the calculation
by GPU is more efficient than CPUs in terms of speed and energy
efficiency, this optimality is the result of a good choice of the size of
the block used and depending on the number of processors in the
graphics card.

Conclusion

More and more computers are integrating graphics processors or
GPUs into their configurations, offering significant computing power.
This computing power is intended exclusively for programs handling
graphical and non-graphical data such as physics problem solving.
However, we believe that we can use this computing power of GPUs
in other ways. We have demonstrated in this paper successfully the
implementation of the Lagrange method using CUDA C to calculate
density at different temperatures and we have found that GPUs
outperform CPUs in terms of execution speed which shows efficiency
of performance. use of GPUs in parallel computing.

Competing Interests

The authors declare that they have no competing interests.

References

1. CUDA C programming guide version 6.5. NVDIA Corporation.

2. Arora M (2012) The Architecture and Evolution of CPU-GPU Systems for
General Purpose-Computing.

3. Tarditi D, Puri S, Oglesby J (2006) Accelerator: Using Data Parallelism
to Program GPUs for General-Purpose Uses. ACM SIGARCH Computer
Architecture News 34: 325-335.

4. NVIDIA (2008) NVIDIA CUDA Compute Unified Device Architecture
Programming Guide, Version 2.0.

Citation: Rtal Y, Hadjoudja A (2021) Comparative Study of the Performance of the Lagrange Implementation on GPU and CPU Using CUDA. Int J Comput Softw
Eng 6: 166. doi: https://doi.org/10.15344/2456-4451/2021/166

 Page 4 of 4

5. Ghorpade J, Parande J, Kulkarni M, Bawaskar A (2012) GPGPU processing
in CUDA architecture. Advanced 12 Computing: An International Journal.

6. Berrut JP, Mittelmann H (1997) Lebesgue constant minimizing linear
rational interpolation of continuous functions over the interval. Comput
Math Appl 33: 77-86.

7. Wikipedia.

8. Ledjfors C (2008) High Level GPU Programming. Department of Computer
Science Lund University.

9. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, et al. (2008) A Performance
Study of General-Purpose Applications on Graphics Processors Using-
CUDA. Journal of Parallel and Distributed Computing 68: 1370-1380.

10. Yadav K, Mittal A, Ansari MA, Vishwarup V (2012) Parallel Implementation
of Similarity Measures on GPU Architecture using CUDA.

11. Lippert A (2009) NVIDIA GPU Architecture for General Purpose Computing.

12. Werner W (1984) Polynomial interpolation: Lagrange versus Newton. Math
Comp 43: 205-217.

13. http://ark.intel.com/Product.aspx?id=30784

14. http://www.nvidia.com/object/geforce_8500.html

Temperature Ti(°C) Density Ri in (kg / m3) CPU Time Ts in (ms) GPU Time Tp in (ms) Speed up (Ts⁄Tp)

100 927.56 8.32 0.25 33.28

150 915.48

200 903.23

251 890.55
290 880.73
305 876.93
500 826.01
800 742.45

Table 2: Results of the implementation of the Lagrange interpolation method on CPU and GPU.

https://dl.acm.org/doi/10.1145/1168919.1168898
https://dl.acm.org/doi/10.1145/1168919.1168898
https://dl.acm.org/doi/10.1145/1168919.1168898
https://doi.org/10.15344/2456-4451/2021/166
https://www.sciencedirect.com/science/article/pii/S0898122197000345
https://www.sciencedirect.com/science/article/pii/S0898122197000345
https://www.sciencedirect.com/science/article/pii/S0898122197000345
https://www.sciencedirect.com/science/article/abs/pii/S0743731508000932
https://www.sciencedirect.com/science/article/abs/pii/S0743731508000932
https://www.sciencedirect.com/science/article/abs/pii/S0743731508000932
http://ark.intel.com/Product.aspx%3Fid%3D30784
http://www.nvidia.com/object/geforce_8500.html

