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Introduction

The analysis of shapes and shape variation is of great importance 
in a wide variety of disciplines. Initially in 1917 D’Arcy Thompson 
[1] studied the field of geometrical shape analysis from a biological 
point of view. Intuitively it is especially interesting for biologists since 
shape is one of the most concise features of an object class and may 
change over time due to growth or evolution. The problems of shape 
spaces and distances have been intensively studied by Kendall [2] and 
Bookstein [3] in a statistical theory of shape. We follow Kendall [2] 
who defined shape as all the geometrical information that remains 
when location, scale, and rotational effects are filtered out from the 
object. Sometimes it is also interesting to retain the size of the objects, 
but we will not consider this case here. In most applications this 
invariance is not given a-priori, thus it is indispensable to transform 
the acquired shapes into a common reference frame. Different 
terms are equivalently used for this operation, i.e. superimposition, 
registration, and alignment. Only if the shapes are aligned, it will be 
possible to compare them in order to describe deformations or to 
define a measure distance between them.

Bookstein geometrically analyzed shapes and measured their 
change in many biological applications, e.g. bee wings, skulls, and 
i.e. human schizophrenia brains [4]. To give an example, with his 
morphometric studies he found out that the region connecting the 
two hemispheres is narrower in schizophrenic brains as in normal 
brains. In digital image processing the statistical analysis of shape is a 
fundamental task in object recognition and classification. It concern 
applications in a wide variety of fields, e.g. [5].

The Problem of Alignment of 2-D Shapes

Consider  two shape instances P  and  O  defined  by the point-sets 
 pi ε R2, i= 1,2,...,Np and ok ε R2, k=1,2,...,N0

  respectively. The basic task 
of aligning two shapes consists of transforming one of them (say P) so 
that it fits in some optimal way the other one (say O) (see Figure 1).

Generally the shape instance P={pi} is said to be aligned to the 
shape instance O={ok} if a distance d(P,O) between the two shapes 
can not be decreased by applying a transformation ψ to P. Various 
alignment approaches are known [6-12]. They mainly differ in the 
kind of mapping (i.e. similarity [8], rigid [13], affine [14]) and the 
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chosen distance measure. A survey of different distance measures 
used in the field of shape matching can be found in [15]. 

For calculating a distance between two shape instances the 
knowledge of corresponding points is required. If the shapes 
are defined by sets of landmarks [16,17] the knowledge of point 
correspondences is implicit. However at the beginning of many 
applications this condition is not hold and often it is hard or even 
impossible to assign landmarks to the acquired shapes. Then it is 
necessary to automatically determine point correspondences between 
the points of two aligned shapes P and O, see Figure 2.

One of the most essential demands on these approaches is 
symmetry. Symmetry means obtaining the same correspondences 
when mapping instance P to instance O and vise versa instance O to 
instance P. This requirement is often bound up with the condition to 
establish one-to-one correspondences. This means a point ok in shape 
instance O has exactly one corresponding point pk in shape instance 
P. If we compare point sets with unequal point numbers under the 
condition of one-to-one mapping then it is clear that some points will 
not have a correspondence in the other point set. These points are 
called outlier.

Special problems arise if we have to align shapes that are very 
different, for example aligning concave to convex shapes. In these 
cases it is indispensable to take into account the order of the point-sets 
and to enforce legal sets of correspondences, otherwise the calculated 
distances are incorrect. This paper presents our novel algorithm for 
aligning arbitrary 2D-shapes, represented as ordered point-sets. In 
our work natural shapes are acquired manually from real images. The 
object shapes can appear with varying orientation, position, and scale 
in the image. The shapes are arbitrary and there is nothing special 
about them. They might have a great natural variation. They also might 
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Abstract

Generalized shape models of objects are necessary to match and identify an object in an image. To 
acquire these kind of models special methods are necessary that allow to learn the similarity pair-wise 
similarity between shapes. They mainly concern is the establishment of point correspondences between 
two shapes and the detection of outlier. Known algorithm assume that the aligned shapes are quite similar 
in a way. But special problems arise if we have to align shapes that are very different, for example aligning 
concave to convex shapes. In such cases it is indispensable to take into account the order of the point-
sets and to enforce legal sets of correspondences; otherwise the calculated distances are incorrect. We 
present our novel shape alignment algorithm which can also handle such cases. The algorithm establishes 
symmetric and legal one-to-one point correspondences between arbitrary shapes, represented as ordered 
sets of 2D-points and returns a distance measure which runs between 0 and 1.
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be very similar or very dissimilar. They even might have concave or 
convex shapes. The algorithm establishes symmetric and legal one-to-
one point correspondences between arbitrary shapes, represented as 
ordered sets of 2D-points and returns a distance measure which runs 
between 0 and 1.

Related Work

The problems of shape spaces and distances have been intensively 
studied [3,2] in a statistical theory of shape. The well-known 
Procrustes distance [8,16] between two point-sets P and O is defined 
as the sum of squared distances between corresponding points

                                                                                                          (1)
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where R(θ) is the rotation matrix, μP and μO are the centroids of 
the object P and O respectively, σP and σO are the standard deviations 
of the distance of a point to the centroid of the shapes and NPO is the 
number of point correspondences between the point-sets P and O. 
This example shows that the knowledge of correspondences is an 
important prerequisite for calculation of shape distances.

There has been done a lot of work which concerns the problem 
of automatic finding point correspondences between two unknown 
shapes. Hill et al. [14] presented an interesting framework for 
the determination of point correspondences. First, the algorithm 
calculates pseudo-landmarks based on a set of two-dimensional 
polygonal shapes. The polygon approximation is controlled by an 
automatic calculated threshold in order to identify a subset of points 
on each shape. In the next step they establish an initial estimate of 
correspondences based on the arc-path length of the polygons. Finally, 

Figure 2: Aligned shapes with established point correspondences.

Figure 1: Alignment of two shapes instances with superimposition and similarity transformation.
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the greedy algorithm is used as an iterative local optimization scheme 
to modify the correspondences in order to minimize the distance 
between both polygons. The complexity of the greedy algorithm is 
O(nlog n) for sorting the elements and O(n) for the selection. Brett 
and Taylor [12] presented the extension of this method to three-
dimensional surfaces. However, the algorithm was only applied 
to groups of objects from the same category. They assume that all 
acquired shapes are similar and compared them under non-rigid 
transformation.

Another popular approach in solving the correspondence problem 
is called Iterative Closest Point (ICP) developed by Besl and McKay 
[18] and further improved in [10,11,19]. Given a set of initial, 
estimated registrations the ICP automatic converges to the nearest 
local minimum of a mean squared distance metric. It establishes 
correspondences by mapping the points of one shape to their closest 
points on the other shape. In the original version of the ICP [18] 
the complexity of finding for each point pk in P the closest point in 
the point-set O is  O(NpNo) in worst case. Marte et al. [11] improved 
this complexity by applying a spatial subdivision of the points in the 
set O. They used clustering techniques to limit the search space of 
correspondences for a point pk to points which are located within 
a defined range around pk . But this can only be done because they 
assume that the point-sets are already in a close proximity, i.e. a 
reasonably good initial registration state is already given. In general, 
the ICP is a very simple algorithm which can also be applied to shapes 
with geometric data of different representations (e.g. point-sets, line 
segments, curves, surfaces). On the other hand it is not very robust 
with respect to noise and outlier. Fitzgibbon [10] replaced the closed-
form inner loop of the ICP by the Levenberg-Marquardt algorithm, 
a non-linear optimization scheme. His results showed an increased 
robustness and a reduction of the dependence of the initial estimated 
registrations without a significant loss of speed.

The main problem of the ICP is that is does not guarantee to produce 
a legal set of correspondences. By a legal set of correspondences 
is meant that there are no inversions between successive pairs of 
correspondences (see figure 1). In detail, when starting from a 
reference pair of corresponding points and traveling successive 
around the complete boundaries to pairs of correspondences, the 
arc path lengths in relation to the reference points always have to be 
increasing.
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An extension of the classical Procrustes alignment to point-sets of 
differing point counts is known as the Softassign Procrustes Matching 
algorithm [8]. It alternates between solving for correspondence, the 
spatial mapping, and the Procrustes rescaling. The Softassign Procrustes 
Matching algorithm is also an iterative process and uses deterministic 
annealing to solve the optimization problem. In deed it is a very time-
consuming and computationally expensive procedure. They applied 
the algorithm to dense point sets not to closed boundaries. One-to-
one correspondences between points were established and points 
without correspondences are rejected as outlier. The establishment of 
point correspondences is only held in a nearest neighbor framework 
so they do not guarantee to produce legal sets of correspondences.

Another solution of the correspondence problem was presented by 
Belongie et al. [20]. He added to each point in the set a descriptor 
called shape context. The shape context of a point is a histogram 
which contains information about the relative distribution of all other 
points in the set. The histogram can provide invariance to translation, 
scale, and rotation. The cost of mapping two points is calculated by 
comparing their histograms using the χ2 test statistic. The χ2 distances 
between all possible pairs of points between the two shapes have to be 
calculated which results in a square distance matrix. The best match 
is found where the sum of distances between all matched histograms 
has reached its minimum. To solve this square assignment problem 
they applied a shortest augmenting path algorithm for bipartite graph 
matching which has a time complexity of O(n3). The result is a set 
of one-to-one correspondences between points with similar shape 
contexts. The algorithm can also handle point-sets with different point 
counts by integrating dummy points. But it is also not guaranteed that 
legal sets of correspondences were established.

In none of these works is described the problem of aligning a convex 
to a concave shape. There arise special problems: Let us suppose that 
the concave shape representing the letter C is compared with the shape 
of the letter O (see figure 4). If the pair-wise correspondences were 
established between nearest neighbored points the resulting distance 
between both shape instances will be very small (see figure 4A). But 
intuitively we would say that these shapes are not very similar. In 
particular in such cases it is necessary to regard the order of point 
correspondences and to remove correspondences if they produce 
inversions. In addition to legality of correspondences it is important 
to take into account the complete contours of both shapes (see figure 
4B). In result it can be seen that there arise big distances between 
corresponding points which leads to an increased distance measure.

Figure 3: Illegal and legal sets of correspondences.
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Material Used for this Study

The materials we used for this study are fungal strains that are 
naturally 3-D objects but that are acquired in a 2-D image. These 
objects have a great variance in the appearance of the shape of the 
object because of their nature and the imaging constraints. Six fungal 
strains representing species with different spore types were used for 
the study. Figure 5 shows one of the acquired images for each analyzed 
fungal strain.

The strains were obtained from the fungal stock collection of the 
Institute of Microbiology, University of Jena / Germany and from 
the culture collection of JenaBios GmbH. All strains were cultured in 
Petri dishes on 2% malt extract agar (Merck) at 24°C in an incubation 
chamber for at least fourteen days. For microscopy fungal spores were 
scrapped off from the agar surface and placed on a microscopic slide 
in a drop of lactic acid. Naturally hyaline spores were additionally 
stained with lactophenol cotton blue (Merck). A database of images 
from the spores of these species was produced.
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Acquisition of Shape Cases

Background

The acquisition of object shapes from real images is still an essential 
problem of image segmentation. For automated image segmentation 
often low-level methods, such as edge detection [8] and region 
growing [21,22] are used to extract the outline of objects from an 
image. Low-level methods yield good results if the objects have 
conspicuous boundaries and are not occluded. In the case of complex 
backgrounds and occluded or noisy objects, the shape acquisition 
may result in strong distorted and incorrect cases.

Therefore the acquisition is often performed manually at the cost of 
a very subjective, time-consuming procedure. In some studies it might 
be sufficient to reduce the shapes of objects to some characteristic 
points which are common features of the object class. Landmark 
coordinates [2,4,17,23] are manually assigned by an expert to some 
biologically or anatomically significant points of an organism. This has 

Figure 5: Images of six different fungi strains.

Figure 4: Establishing correspondences while mapping a concave and convex shape.
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to be done for every single object separately. Additional landmarks can 
be automatic constructed using a combination of existing landmarks. 
The calculation of the position of these constructed landmarks has 
to by precisely defined, i.e. landmark C is located in the midpoint of 
the shortest line between landmark A and landmark B. Every single 
landmark is not only defined by its position but also by the specific 
and unique feature that it represents.

Landmarks might provide information about special features of 
an object contour but cannot capture the shape of an object because 
important characteristics might be lost. In many applications it is 
insufficient or impossible to describe the shape of an object only by 
landmarks. Then it is a common procedure to trace and capture the 
complete outlines of the objects in the images manually [14]. Indeed, 
manually image segmentation may be a very time-consuming and 
also inaccurate procedure. Therefore new semi-automatic approaches 
were developed [24,25] for interactive image segmentation. These 
approaches use live-wire segmentation algorithms which are based 
on a graph search to locate mathematically optimal boundaries in 
the image. If the user moves the mouse cursor in the proximity of 
an object edge, the labeled outline is automatically adjusted to the 
boundary. The manual acquisition of objects from real images with 
the help of semi-automatic segmentation approaches is faster and 
more precise.

As described in above we are actually studying the shape of airborne 
fungi strains. The great natural variance in the shape of these objects 
and the imaging constraints have the effect that a manual assignment 
of landmark coordinates is quite impossible. We also reject a fully 
automatic segmentation procedure because this might produce 
outlier shapes due to the objects might be touching and overlapping. 
Therefore we decided to use a manually labeling procedure in our 
application.

Acquisition of object contours from real images

As a shape we are considering the outline of an object but not the 
appearance of the object inside the contour. Therefore we want to 
elicit from the real image the object contour P represented by a set of
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NP boundary points pk, k=1,2,...,Np. The user starts labeling the 
shape of the object at an arbitrary pixel p1, of the contour P. In our 
application we are only interested in the complete and closed outline 
of the objects. So after having traced the object, the labeling should 
end at a pixel pm, k=1,2,...,m,...,Np in the 8-neighbourhood of P1. 
Because it might be difficult to exactly meet this pixel manually, the 
contour will be closed automatic using the Bresenham [26] procedure. 
This algorithm connects two pixels in a raster graphic with a digital 
line. In addition to that we demand that two successive points may 
not be defined by exactly the same point coordinates in the image. In 
consequence we obtain an ordered, discrete, and closed sequence of 
points where the Euclidean distance between two successive points is 
either 1 or      . In Figure 6 the scheme of the acquisition of a shape is 
shown for illustration.

Figure 7 presents a screenshot from our developed program Case 
Acquisition and Case Mining - CACM while labeling a shape of the 
strain Ulocladium Botrytis with the point coordinates on the right side 
of the screenshot.

In fact image digitization and human imprecision always implies 
an error during the acquisition of the object shapes. It might be 
very difficult to exactly determine and meet every boundary pixel 
of an object when manually labeling the contour of an object. Also 
the quantization of a continuous image constitutes a reduction in 
resolution which causes considerable image distortion (Moiré effect). 
Furthermore the contour of an object in a digitized image may be 
blurred which means the contour is extended over a set of pixels with 
decreasing grey values.

Approximation

The amount of acquired contour points NP of a shape P depends 
on the resolution of the input image and on the area and the contour 
length of the object. To speed up the succeeding computation time 
of the following alignment process we introduced a polygonal 
approximation. The resulting number of points from a polygonal 
approximation of the shape will be influenced by the chosen order 
of the polygon and the allowed approximation error. We apply the

Figure 6: Scheme of the labeled object outline.
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approximation only to shapes which consist out of more than 200 
points. This limit was introduced because the contour of very small 
objects in images might be defined by a few pixels only. A further 
reduction of information about the contour of these objects would be 
disadvantageous.

For the polygonal approximation, we used the approach based on the 
area/length ratio according to Wall and Daniellson [27] because it is a 
very fast and simple algorithm without time-consuming mathematic 
operations. Suppose the set of NP points p1,p2,...,pn, defining the 
contour of the object P, for which a polygonal approximation is 
desired. We use the first labeled point p1, as the starting point for the 
first approximation. Next we virtually draw a line segment from this 
starting point to the successor point in P. The area A between this 
line and the corresponding contour segment of P is measured. If the 
area A divided by the length of the line L is smaller then a predefined 
threshold T, then the same process is repeated for the next successor 
point in the set P (see Figure 8).

This procedure repeats until the ratio exceeds the threshold 
T. In that case the current point pm, becomes the end point of the 
approximated line and the starting point for the next approximation. 
The same process is then repeated until the first point p1, is reached. 
The result of the approximation is a subset of points of the contour P.
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The ratio    controls the maximal error of the approximation since 
A is the area and L the side length of a virtual rectangle. If the ratio is 
low then the other side of the virtual rectangle is small.

Normalization of shape cases

In our application we demand the distance measure between two 
shapes to be invariant under translation, scale, and rotation. Thus, 
in a preprocessing step we remove differences in translation and we 
rescale the shapes so that the maximum distance of each point from 
the centroid of the shape will not be larger than one. The invariance to 
rotation will be calculated during the alignment process.

The centroid      of a set of NP points is given by:

                                                                                              (2)

To obtain invariance under translation we translate the shape so 
that its centroid is at the origin

Figure 7: Labeled shape with coordinates.

Figure 8: Polygonal approximation based on the area/length ratio [27].
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                                                                                                    (3)

Furthermore for each shape we calculate the scale factor tp:

                                                                                                    (4)

This scale factor is applied to all points of the shape P to obtain 
the transformed shape instance P'. The set of acquired shapes are 
now superposed on the origin of a common coordinate system. The 
maximum Euclidean distance of a point to the origin of the coordinate 
system is one.

Shape Alignment and Distance Calculation

The alignment algorithm

In the Procrustes Distance (see Eq. 1) each of the shapes is rescaled 
in such a way that the standard deviation of all points to the centroid 
is identical (σP=σO). This normalization does not ensure that the 
resulting distance runs between 0 and 1. Since we are interested in 
comparing objects of different categories we rescale the shapes so that 
the maximum distance of a point to the centroid is not larger than 1. 
In comparison to Procrustes Distance we also do not need μP and μO 
because we have already removed the translation by transforming the 
objects into the origin.

The differences in rotation will be removed during our iterative 
alignment algorithm. In each iteration of this algorithm the first shape 
is rotated stepwise while the second shape is kept fixed. For every 
transformed point in the first shape we try to find a corresponding 
point on the second shape. Based on the distance between these 
corresponding points the alignment score is calculated for this 
specific iteration step. When the first shape is rotated once around 
its centroid, finally that rotation is selected and applied where the 
minimum alignment score was calculated.

We are regarding arbitrary shapes with varying orientations and 
different point counts and do not have any information about how the 
points of two shape instances have to be mapped onto each other. As 
already stated, we have to solve the correspondence problem before 
we are able to calculate the distance between two shape instances. In 
summary, for the establishment of point correspondences we demand 
the following facts:

1. Produce only legal sets of correspondences,
2. Produce one-to-one point correspondences,
3. Determine points without a correspondence as outlier, and
4. Produce a symmetric result, which is obtaining the same results 

when aligning instance P to instance O as when aligning instance 
O to P.

It was shown above that the establishment of legal sets of 
correspondences is an important fact to distinguish between 
concave and convex shapes. The drawback of this requirement is 
that the acquired shapes have to be ordered point-sets. The demand 
for establishing only legal sets of correspondences is also the main 
reason why we decided to extend the initial version of our alignment

Citation: Perner P (2018) Determining the Similarity between Two Arbitrary 2-D Shapes and its Application to Biological Objects. Int J Comput Softw Eng 3: 139. 
doi: https://doi.org/10.15344/2456-4451/2018/139

       Page 7 of 12

algorithm [28] that can only align concave with concave and convex 
with convex shapes. We extended our nearest neighbor-search 
algorithm presented there so that it can handle the correspondence 
problem while aligning concave with convex object shapes.

The input for our alignment algorithm is a pair of two normalized 
shapes P and O as described above. We define the shape instance P as 
the one which has less contour points then the second shape instance 
O. The instance with more points is always that one, which will be 
aligned to shape instance with less points. That means shape P will be 
kept fixed while shape O will be stepwise rotated to match P.

Before the iterative algorithm starts we define a range where 
to search for potential correspondences. This range is defined by a 
maximum deviation of the orientation according to the centroid 
(see Figure 9). This restriction will help us to produce legal sets of 
correspondences. The maximum permissible deviation of orientation 
γdev will be calculated in dependence of the amount of contour points 
nO of the shape O, which is the instance that has more points than the 
other one. Our investigations showed that the following formula leads 
to a well-sized range

                                                                                              (5)

The outline of our iterative alignment algorithm is as follows:

Calculation of point correspondences

The most difficult and time-consuming part is the establishment 
of point-correspondences. For each point pk with 1≤k≤np in the set 
P we try to establish exactly one corresponding point oj with 1≤j≤no 
in the set O. To create a list of potential correspondents we first 
select all points in O which are located in the permissible range of 
orientation (see Figure 9) and insert them into this list of potential 
correspondents {CorrList(pk)} of pk. Each of the selected points meets 
the following condition

                                                                                              (6)

with γpk the angle of point pk and γdev the permissible range of 
orientation around pk.

In Figure 10 is shown a part of two aligned shape instances at this 
state of registration. Each point in shape P is connected by lines to all of 
its potential correspondences. It can also be seen that there are outlier 
on shape O. As an outlier we define all points where no correspondence 
could be established. Resulting points without correspondences are a 
logical consequence if we demand one-to-one correspondences when 
mapping shapes with unequal number of points. Such kind of points 
does not have any influence on the calculated distance.
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If no point in O is located in the permissible range {CorrList(pk)}
is empty), pk is marked as an outlier. Normally in case of aligning 
convex objects there is no point in P which has not at least one 
potential correspondence. The permissible range of orientation is 
chosen big enough anyway. Indeed, this kind of outliers occurs only 
in cases of aligning convex to concave objects. Each point pk which 
has not a single potential corresponding point in O is included with 
the maximum distance of one when calculating the distance measure.

If there is at least one potential correspondent we calculate the 
squared Euclidean distances between pk and each point in this list. 
Then the points in this list {CorrList(pk)} were  sorted with ascending 
distances in relation to pk. In succession we check for each point in this 
list if there was already assigned a corresponding point in P. The first 
found point without a correspondence is selected and we establish a 
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one-to-one correspondence between them. If all points in the list 
{CorrList(pk)} have already a correspondence the point pk is marked 
as an outlier. In contrast to those outliers in P which do not even have 
one potential correspondence in O, this kind of outlier will not be 
included in calculating the distance measure.

Let us assume we had gone through the complete set P and 
assigned to each point pk either a correspondence in O or marked it 
as an outlier. In the next step we want to ensure to produce a legal 
set of correspondences. Therefore we go through the set P again and 
remove all one-to-one correspondences that are inversions (see figure 
3). Suppose we have found a point kp assigned to a correspondence 
og in O that produces an inversion with the point pm which is assigned 
to the point of  (k,m≤np; g,f≤no). First we try to remove the inversion 
by switching the correspondences, i.e. pk will be assigned to of and pm 

Figure 10: Part from a screenshot made during the alignment of two shape cases. The outer dotted shape 
(P) is aligned to the inner dotted shape (O). Each point pk in P is connected by lines with all of its potential 
correspondences that are stored in {CorrList(pk)}.

Figure 9: The permissible deviation of orientation for finding a point correspondent of the point pk is illustrated. 
The line marks the orientation of the point pk. The range where to search for a correspondence is shown.
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will be assigned to og. Otherwise we remove the correspondence 
of pk and check in succession all the remaining points in the list 
{CorrList(pk)} if it is possible to assign a correspondence with one of 
these points that does not produce an inversion. If we find a point in 
this list, we establish the one-to-one correspondence between these 
two points. Otherwise we have to mark pk as an outlier.

Calculation of the distance measure

The distance between two shapes P and O is calculated based on the 
sum of Euclidean distances. If there was assigned a correspondence to 
the point pk, 1≤k≤np in p, the Euclidean distance between this point 
and its corresponding point ok in O is calculated by 

                                                                                                  (7)

If the point pk is an outlier because there could not be assigned at 
least one potential correspondence and the list {CorrList(pk)} is empty, 
the distance is set with the maximal value of one 

                                                                                                   (8)

The sum of all pair-wise distances between two shapes P and O is 
defined by

                                                                                                   (9)

Due to the fact that we interested in obtaining a distance measure 
which runs between zero and one, we normalize the sum according to 
nP, the number of points in P

                                                                                                   (10)

The mean Euclidean distance alone is not a sufficiently satisfactory 
measure of distance. Particularly in cases of wavy or jagged contours 
important information get lost using the averaged distance. Therefore 
we also calculated the maximum distance between a pair of established 
correspondences 

                                                                                                    (11)
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The final similarity measure is the weighted sum of the mean 
Euclidean distance and the maximum Euclidean distance

                                                                                                      (12)

The choice of the value for the weights α and β depends on the 
importance the user wants to respective distance measure. We chose 
for α and β a value of 0.5 which results in an equal influence of both 
distances to the overall distance. 

Evaluation of our alignment algorithm

At first we will demonstrate that the algorithm is symmetric (see 
Figure 11), i.e. the same distance is calculated when aligning instance 
P to instance O as when aligning instance O to P. As described in 
above the instance with more contour points is always that one which 
will be aligned to shape instance with less points. Therefore, the order 
in which the cases are given as input into the algorithm doesn’t matter. 
A special case where the order matters is if both shape instances are 
defined by the same amount of contour points.

The following table presents some results of pair-wise aligned shape 
cases. In the left column of the table the visual results are shown with 
connecting lines between corresponding points. The right column 
of the table presents the calculated scores and the number of outlier 
which are included in the alignment score with a distance value of 
one. The alignment score of value zero means identity and the value 
of 0.5 can be understood as neutral. Up to a value of one the shapes 
become more and more dissimilar.

Again we take a closer look at the pair-wise alignment of a concave 
and a convex shape. Reconsider the example from above where the 
shape of the letter O has to be aligned to the shape of a letter C. Figure 
13 presents a screenshot from our program where a similar situation 
occurred. There were twelve outlier determined on the convex shape 
which are included in the calculation of the alignment score. As 
more of these outliers are included as more dissimilar the two shapes 
become because each of them is assigned with the maximum distance 
of one.
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Figure 11: Evaluation of Symmetry.
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Figure 12: Different shapes with corresponding distance measures and the alignment scores.
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Under these circumstances the points on the inside of the concave 
shape may not have any influence on the resulting alignment score. 
This is due to the fact that they were not mapped onto opposite points 
of the contour of the convex shape (see figure 4B). In deed, this is an 
error of the algorithm but otherwise it may happen that the alignment 
score exceeds the value one.

Conclusions

We have proposed a method for the acquisition of shape instances 
and our novel algorithm for aligning arbitrary 2D-shapes, represented 
by ordered point-sets of varying size. Our algorithm aligns two shapes 
under similarity transformation; differences in rotation, scale, and 
translation are removed. It establishes one-to-one correspondences 
between pairs of shapes and ensures that the found correspondences 
are symmetric and legal. The method detects outlier points and can 
handle some amount of noise. We have evaluated that the algorithm 
also works well if the aligned shapes are very different, like i.e. the 
alignment of concave and convex shapes. A distance measure which 
runs between 0 and 1 is returned as result.

The methods are implemented in the program CACM Version 1.4 
which runs on a Windows PC.
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