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Introduction

It is ideal for a pipelined processor to run at its full speed when 
executing an application. However, due to a variety of pipeline 
hazards, especially the long memory access operations, an instruction 
thread executed in a pipeline will go through frequent stalls. To 
lower the long pipeline stall caused by the memory access, we can 
use cache. Cache reduces the number of memory accesses and 
effectively shortens the processor stall time. To reduce the impact 
of execution stall on performance, we can exploit the multithreaded 
execution. With multiple threads available, the pipeline idle time due 
to one thread stall can be used by other threads, hence the pipeline 
throughput is increased.

However, when both enhancements (cache and multi-threaded 
execution) are implemented in the processor system, the synergy 
may not necessarily exist. Take the problem shown in Figure 1 as an 
example. Assume two threads (T1 and T2) execute a code segment 
whose control flow graph is given in Figure 1(a). The code consists 
of five basic blocks1, B1-B5. Among them, B2 and B4 are loop blocks 
(the loop counts are shown beside the blocks). Assume that each basic 
block can be fully cached and the cache is direct-mapped and can 
hold maximally two blocks. Then, blocks B1, B3 and B5 will compete 
for one cache location, and blocks B2 and B4 for the other location.

Assume each basic block takes the same amount of time to execute 
and the memory access delay (i.e. cache miss penalty) is three times 
the block execution time. The execution timing of each individual 
thread is shown in Figure 1(b), where each timing block in the 
diagram represents the execution time of a basic (instruction) block. 
For a loop block, the block execution time is multiplied by the number 
of loop iterations for the overall execution time. The execution trace 
for thread T1 is B1-B2-B4-B5, and for thread T2 is B1-B2-B3-B5. The 
two threads have a total execution time of t1+t2. If the two threads 
are interleaved, without considering any potential cache competition 
issues between threads, the ideal multi-threaded execution would 
be like in Figure 1(c). The shaded blocks show the time spent on 
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switching execution to the other thread. The overall execution time is 
t3 and (t1+t2)≥t3 >max{t1, t2}. However, since the two threads compete 
for locations in the cache, one thread may evict the instructions 
cached by another, and the real threaded execution turns out to be 
the one that is shown in Figure 1(d). As can be seen, the number 
of cache misses, hence the thread switching frequency, is actually 
increased, so is the execution time (t4 > t3). Cache misses lead to 
accesses to memory. Since memory access is power consuming, 
significant power will be consumed. In addition, the thread 
switching incurs overhead, which further adds woes to the design.

In this paper, we investigate the micro-architectural level solutions 
to make the cache behave in harmony with the threaded execution in 
the pipeline. Since instruction cache misses account for a considerably 
higher performance impact than data cache misses [1] due to frequent 
instruction fetches, we focus this study on the instruction cache. We 
target applications that offer embarrassing parallelism where the same 
code can be executed by a number of independent threads on different 
data sets. Such applications can be found in real-world computing 
problems such as encryption [2], scientific calculation [3], multimedia 
processing [4] and image processing [5]. Those large computing 
problems demand designs of multiprocessor systems that can be built 
on the small building-block processors like the one we discuss in this 
paper, as is illustrated in Figure 2. Such embedded processors are 
usually constrained with resources to reduce energy and area costs. 
We focus on the multi threaded processor with a single pipeline and a 
small cache that processes light weight applications and we present a 
thread synchronization approach that synchronizes thread execution 
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Abstract

Energy consumption is a critical issue in embedded systems design. A basic way for an embedded 
processor system to be energy efficient is to complete execution early and consume low power. Multi 
threaded processors interleave thread execution, reducing the processor’s idle time, hence the overall 
execution time. Caches moderate the long and power hungry external memory accesses, allowing for both 
performance improvement and power saving. However, when the two techniques are applied together, 
the efficiency of the design may not be as high as expected. The multi threaded execution can adversely 
interfere cache operations, increasing cache misses and leading to overall performance loss and large 
energy consumption. This paper presents a microarchitecture level design to enable the synergy of the 
two design techniques for embedded processors. Particularly we focus on a single pipeline processor with 
an instruction cache for applications that offer embarrassing parallelism. Such a design can be used as a 
building block processor for large computing systems. We propose a thread synchronization and cache 
locking scheme to allow cached instructions to be maximally reused by all threads. The experiments on 
a set of applications show that for the designs with 1 way cache and 300MB memory, an average of 26% 
baseline energy can be saved, and the energy savings become more significant when the memory size is 
increased.

1A basic block contains a sequence of instructions. If the first instruction in the basic block 
is executed, the rest of the instructions will be sequentially executed.
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on frequent loops to enhance loop instructions reuse. We introduce a 
novel cache design with a cache locking scheme that provides a near 
100% cache hit for synchronized thread executions and we apply the 
thread switching design introduced in [6] that parallelizes tasks in the 
thread scheduling and tucks-in execution switching into the processor 
pipeline to eliminate the thread switching performance overhead. 
Overall, our design is small, low cost, yet of high performance and 
energy efficiency.

Related Work

Thread synchronization and cache locking have been studied in 
several areas. Works on thread synchronization can be commonly 
found at the system level implementations, where operating system or 
special firmware coordinates and synchronizes threads execution to 
ensure the overall applications’ functionality and performance [7-9].
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Synchronizing threads to increase instruction reuse (hence reducing 
cache misses), has also been investigated recently in some application 
areas, such as database processing, cryptography, image processing 
and multimedia processing. This section is aimed at discussing some 
of these studies that are relevant to our work.

Atta et al. in [10] investigated online transaction processing 
(OLTP), where each transaction can be regarded as an independent 
execution thread. Some transactions execute similar functional 
code. They proposed to synchronize those similar transactions 
to optimize instruction cache reuse for better performance. They 
presented a hardware level synchronization scheme, STREX, that is 
fully transparent to the program-mer. This scheme exploits similar 
behavioural patterns within transactions to attain an optimal 
instruction reuse level in a single core. The points at which the 

Figure 1: Motivational Example (a) code executed by two threads (b) single thread execution (c) ideal threaded execution (d) real 
threaded execution.

Figure 2: An Example of System Structure with Building Block Processors.

https://doi.org/10.15344/2456-4451/2018/131


Int J Comput Softw Eng                                                                                                                                                                                           IJCSE, an open access journal                                                                                                                                          
ISSN: 2456-4451                                                                                                                                                                                                        Volume 3. 2018. 131                                   

transaction executions are switched, are dynamically detected. STREX 
groups transactions of the same type into teams and places them in 
a queue for a CPU. The first transaction of the queue is flagged as 
the lead and a counter named phase ID is used to indicate the code 
section that is synchronized. The lead transaction executes first and 
fetches all instructions of a synchronization section into the cache. 
The cached instruction section can then be used by the following 
transactions, avoiding repeated memory accesses. Transactions are 
executed in a round robin manner. When the current synchronization 
section is finished, the lead transaction increments the phase ID and 
moves execution to the next section. Once all transactions of a team 
finish execution, the processor starts executing the transactions of 
another team.

A similar hardware level thread synchronization mechanism was 
also proposed by Nickolls, et al. [11]. In their work, application 
threads that execute the same pool of instructions on different data 
sets are grouped together into an array called Cooperative Thread 
Array (CTA). A sequence of synchronization points called barrier 
instructions are predetermined for each thread group. Barrier 
instructions are detected by hardware and used to suspend execution 
of threads until a specified number of threads reach that barrier point. 
This approach is designed for large, high power consuming graphic 
processing subsystems where very high thread level parallelism is 
available. Utilization of synchronization points (SP) has also been 
explored in the recent work of Foo [12]. In this work, synchronization 
is used to manage access to shared resources by simultaneous threads. 
Every thread in the system pauses at the SP and once all the threads 
are arrived at that SP they start executing simultaneously. However, 
due to varying execution flows controlled by branch instructions, 
some threads may miss a specified SP. When this happens the threads 
that miss the SP are flagged. Threads that are paused at the SP will 
wait only for the non-flagged threads. In order to synchronize flagged 
threads, an extra SP is set at the return address of the branch. Apart 
from the above mentioned work, hardware approaches to provide 
synchronized access to data cache are also studied in some recent 
research work. Zhang, et al. [13] examined data reuse through 
thread scheduling for data centres that concurrently execute multiple 
dataintensive threads. They use a technique, called Cache Matching, 
to capture data locality within and across threads. With their method, 
parts of in-coming cache request sequences are stored in a small 
buffer and interleaved such that a high cache hit rate is attained. 
Huang, et al. [14] devised a dynamic thread scheduler to co-optimize 
data cache locality and load balance in general purpose graphic 
processing units (GPGPU) that implement an on-chip shared cache 
structure. Rogers, et al. [15,16] also proposed a hardware mechanism 
called cache-conscious wave front scheduling (CCWS) to synchronize 
accesses to the first level data cache to avoid potential cache thrashing. 
It helps to reduce power consumption and is especially effective for 
massively multi threaded processor architectures such as GPUs. All 
of the above designs use hardware to control thread synchronization 
at the task level for cache locality. In this paper, we consider thread 
synchronization at the loop execution level and the hardware control 
of thread synchronization can closely work with cache to achieve 
high reuse of cached code. Instruction cache locking is a technique 
employed in our work to prevent loop instructions from getting 
evicted during loop execution. This technique has been discussed 
in several studies, where cache locking is mainly used in reducing 
the timing unpredictability in hard real-time program execution. 
By locking certain data in cache, the fluctuation of the related cache 
misses and memory access time can be controlled. Liang and Mitra 
[17] proposed a static instruction cache locking algorithm that uses 
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the cache temporal re-use profile of a program to determine the 
most beneficial instruction cache blocks to be locked. In a similar 
work Liu et al. [18] presented a compiler level instruction cache 
locking mechanism where instructions to be locked in the cache 
are determined by the program’s statistical execution information 
and the locking is statically implemented. With this approach, cache 
contents to be locked are fetched into the cache before the program 
execution and remain in the cache until the execution finishes. In 
[19] Qui, et al. proposed a dynamic instruction locking mechanism 
that operates in two phases; offline and online. In the offline phase, 
candidate locking regions are selected based on the weighted control 
flow graph of the program and the locking profit of each cache block. 
Candidate regions include loop and non- loop instruction blocks. 
In the online stage, a branch predictor fetches the cache locking 
routine instructions of the regions that are predicted to execute 
in the near future into a buffer. This removes the need to place the 
cache locking instructions inside the program. Another recent work 
in line with instruction cache locking is by Anand and Barua [20]. 
Their mechanism identifies points in the program where a significant 
shift in the instruction locality occurs and computes the cache lines 
required to be locked at each point. However, this approach requires 
special locking instructions inserted into the respective program 
points. In order to prevent this from altering the original program 
layout which eventually invalidates the program point calculations, 
the authors have employed the trampolines approach proposed by 
Buck and Hollingsworth [21].

All of the above instruction cache locking mechanisms are either 
software level approaches that require customized instructions 
to be added into the application thread and/or involve complex 
computations to be performed before the execution of a program.

In our work, we incorporate thread synchronization and instruction 
cache locking into the multi threaded execution in a single pipeline for 
high instruction cache locality. Our approach is hardware based and 
has a configurable synchronization control. It is purely transparent to 
software, yet still provides some customization flexibility for a given 
application. With our approach, high instruction cache locality can be 
achieved even with a small size of cache.

Design of Thread Synchronization for High Instruction 
Cache Locality

Usually loops account for a significant part of the overall execution 
time. To improve the instruction cache locality, we aim at the 
loops with a high execution frequency. We want thread executions 
synchronized at such a loop so that once the loop is cached by one 
thread, it is available in the cache for other threads, avoiding repeated 
memory accesses.

An application can normally be represented by a control flow graph 
(CFG) as illustrated in Figure 3(a). In CFG, a node represents a basic 
block that contains a sequence of instructions. If an instruction in 
the block is executed, all instructions of the block will be executed. 
The CFG of an application shows how execution flows from one basic 
block to another. We name such a block an instruction block, or IB. 
Every instruction resides in a corresponding block in the memory. 
An IB may occupy a number of memory blocks (MB). For example in 
Figure 3(a), the instruction block B1 that contains three instructions 
with addresses 0000 to 0010 given inside the block, will occupy two 
memory blocks if each memory block holds two instructions. When 
the IB is executed, the related MBs will be accessed.
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To effectively capture the correlation of the thread execution and 
memory access pattern, we use a memory trace graph (MTG), 
where each node represents the set of MBs accessed for an IB. The 
MTG diagram specifies how the execution walks over the memory 
space from one MB to another. As an example, Figure 3(b) shows the 
corresponding MTG of the CFG given in Figure 3(a). In this MTG, 
each value in the node is the address of an MB, and each block holds 
two instructions. As can be seen, two IBs can overlap on an MB in 
MTG.

An early thread that comes to a loop for synchronization should 
wait until other threads have arrived. When the loop is cached, it 
will be locked until the loop is completed by other threads. We call 
such a loop the sync loop, the thread that has arrived for the sync 
loop execution the sync thread, and the point at which a sync thread 
is waiting for other threads for next action a sync point. For thread 
synchronization, multiple sync points may be needed. A proper 
design of cache, cache locking and sync points are critical for the sync 
loop execution, which is discussed below.

The effectiveness of cache locality is dependent on whether the 
cache can hold the whole sync loop. For a given application, assume 
the largest sync loop occupies M MBs in the memory, in order to have 
a sync loop fully cached, the minimal cache size is,

                                                                                                     (1)

where      is the ceiling function.

There are many sync loops in an application and some sync loop 
sizes may be smaller or much smaller than the largest sync loop. 
To allow for maximal cache availability to other non-sync threads, 
during a sync loop execution, we only partially lock the cache for the 
sync loop.

Cache locking can be performed on a block basis or on a segment 
basis (a segment covers blocks that are required for the sync loop). In 
the block-based locking, each block is individually locked. An extra
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bit for locking state is required for each block in the cache. 
During a sync loop execution, when a block is cached, its locking 
bit is set. After the sync loop execution is completed, the cache 
controller will reset all the locking bits to free the cache blocks 
for different memory data. This design is not scalable as the 
extra locking bit requirement may incur considerable amount of 
resource overhead for a complicated application with a large cache.

For the segment based design, the whole section of blocks that hold 
the loop are locked at the same time. After the segment is locked in the 
cache, each time a memory access brings a block to cache, the block 
location is checked against the lock section range. If it is within the 
range, the write of the memory block to the cache is disallowed. This 
design can be implemented with a fixed logic (two registers for the 
start and end points of the cache segment plus a comparator), hence 
scalable. We therefore use segment locking method in our design.

The cache segment is expected to be locked by the thread that 
first executes the loop so that the loop instructions cached can be 
reused by other sync threads. However, for a sync loop that contains 
conditional execution paths, some instructions may not be executed 
by the first thread, hence not be cached. This complicates the cache 
locking control.

To ensure all instructions in a sync loop are cached, we employ 
prefetching and a prefetch buffer in the cache design. We set threads 
to be assembled at the first block of the loop and we call the address 
of the first block the assembly point, AP. Once the first sync thread 
arrives at AP, prefetching is activated and starts to fetch the loop 
instructions into the buffer. The buffer serves as a temporal repository 
so that the prefetched instructions will not be evicted from the cache 
by other non-sync threads before the loop starts. The buffer can be 
small but should be big enough to ensure the whole loop is cached 
during the first sync loop execution. After all threads arrive at the AP, 
the buffered instructions are transferred to the cache and the freed 
buffer entries are refilled with new instructions by prefetching; Both 
the instruction transfer and buffer refill can be performed in parallel 
and this parallel processing also helps to reduce the buffer size2. When 
the loop is fully cached, the cache segment related to the loop is 
locked. We call this cache locking approach prefetching-then-cache-
locking, PTCL.

We use the address of the last memory block in the loop as the 
locking point, LP. Once the prefetching passes the point, the loop is 
immediately locked in the cache.

Upon completion of a segment locking, the cache locations of the 
corresponding assembly point (AP) and locking point (LP) are written 
to a register pair as the start and end point of the cache segment. In 
case a new memory block is fetched, the cache controller checks its 
mapped cache location. If it falls in the locked range, the new memory 
block will not be cached.

For a sync loop on the conditional path, such as loop block B4 
in Figure 3(a), some threads may skip the loop and take different 
execution paths. Those threads should be dynamically detected and 
excluded from the loop synchronization. We set the first instruction 
on the path that is parallel to the conditional sync loop as a bypassing 
point, BP. If a thread passes this point, it is removed from the sync 
loop execution. There may be multiple parallel paths, hence multiple 
passing points, for a sync loop.

Figure 3: CFG and MTG of an Application: (a) CFG (b) MTG

2
2

log M

S =

 
 

.  

2In our designs for a given set of applications, the buffer size is 32 bytes.
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During the sync loop execution, when a thread finishes the loop, 
the execution will switch to another thread. We use the address of the 
last instruction of the loop as the control point for thread switching. 
We call this control point the switching point, SP.

As an example, Table 1 lists the four sync point values for the two 
loops B2 and B4 in Figure 3(a). Both AP and LP are block addresses, 
and BP and LP are instruction addresses. Since B2 does not sit on a 
conditional path, BP is not applicable to B2.

We apply the above synchronization design into the multi-threaded 
processor design, which is detailed in the next section.

Multi-Threaded Processor With Sync Loop Execution

Our design is based on the multithreaded processor that takes zero 
clock cycle for thread switching, proposed in [6]. The basic idea of this 
design is to perform thread switching in parallel to thread scheduling 
and keep the scheduling logic out of the critical path.

We extend the baseline design by adding the sync control unit and 
modifications to the thread switching control and cache design, as 
shown in Figure 4(a). The thread switching control now takes the loop 
synchronization into account and the cache controller includes the 
logic for prefetching and cache segment locking.

To dynamically control the sync loop execution, we use a table to 
record the state of each thread as shown in Figure 4(b). Each thread
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has a ready bit, sync bit, and a bypass bit for conditional loop 
execution. We call this table the thread state table, TST.

The ready bit of a thread indicates whether the thread is ready 
to execute. This bit is set under one of the three cases: 1) when the 
memory request from the thread has been completed (i.e. the missed 
block is now available in the cache), 2) when a sync loop is set to start, 
or 3) when a sync loop is completed by all threads.

The ready bit is unset also in three cases: 1) when the thread 
encounters a cache miss, 2) when the thread is stopped at a sync point 
(AP/SP), or 3) The thread finishes its execution.

The sync bit of a thread is set when the thread execution has reached 
the assembly point and it is unset when the thread finishes with the 
sync loop. We use the sync bit to control the sync loop execution, 
while the ready bit is used by the thread scheduler for the next thread 
switching.

The bypass bit is used to identify whether the thread has taken an 
alternative path bypassing a conditional sync loop. If so, the bit is set 
and the thread does not participate in the sync loop execution. It is 
unset when the sync loop is finished. Initially, the bypass bit is set to 
zero. If loop bypassing happens by an instruction in the AP block, the 
related thread will first stop at AP and later be detected when it passes 
BP. When it passes BP, the bypass bit is set. The size of TST is decided 
by the number of existing threads.

Since each thread can cause a cache miss, at a given moment there 
may be multiple requests for memory access. These requests are 
recorded in a memory request queue (MRQ), as shown in Figure 
4(c). For each request, the thread that incurs the memory request and

Loop AP BP LP SP

B2 001 - 010 0101

B4 100 1011 101 1010
Table 1: Sync point value for loops B2 and B4 of figure 3

Figure 4: (a) Architectural Overview of the Multi-threaded Processor with Synchronized Loop Execution (b) Structure of Thread 
State Table (c) Structure of Memory Request Queue (d) Structure of Sync Info Table
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the address for the memory access are specified. An entry is reset if the 
related memory data is fetched from the memory.

For a given application, there may be many sync loops. We use a 
sync information table, SIT to store the sync points for such loops, 
as shown in Figure 4(d). For each loop, AP, LP, SP and BP (for 
conditional execution) are provided. A pointer is used to point to the 
next sync loop. The SIT table can be reconfigured, which offers the 
design flexibility for different applications.

The thread state table is updated by the sync unit, cache controller, 
and the scheduler as elaborated below.

The sync unit takes as input the processor PC value and the sync 
point values of a loop from the sync information table, and generates 
the three control signals for the following purposes:

1.	 to update the thread sync state,
2.	 to start sync loop, and
3.	 to enable prefetching-then-cache-locking (PTCL).

The sync unit consists of three components: logic for checking 
threads bypassing the conditional loop, logic for assembling 
threads, and logic for starting the loop execution. The operations 
of each of these components are specified in Algorithms 1, 2 and 3 
respectively. The comment lines in the algorithms explain the related 
operational steps. For readability and conciseness, functions are used 
to hide some calculation details and their implementation should be 
straightforward. For example, Function getSyncThreadsNum() can be 
implemented by counting the number of threads that have the ready 
bit equal to 1. Variables bypass(j), sync(j) and, ready(j) are bit values 
given by the thread state table (TST).

In the three algorithms, PC stands for the current instruction 
address from the processor. Since thread assembly uses a block 
address as the assembly point (AP), the block address of the PC value, 
denoted as PCBLK , is used in Algorithm 2.

As it is elaborated in Algorithm 2, when the first thread arrives 
at AP, prefetching of the loop blocks starts. When all threads are 
assembled, the sync loop execution is enabled (i.e. the control signal 
loop-en is set). The control of the sync loop execution and prefetching 
are detailed in Algorithms 3 and 4. Algorithm 3 describes how a 
sync thread is executed. Function getFinishedThreadsNum() gets 
the total number sync threads that have finished the loop. If there are 
unfinished threads, the execution will switch to another unfinished 
thread once the current thread completes. Function get Finished 
Threads Num() is simply a counter that increments when a thread 
reaches the SP and resets when the sync loop execution starts..

Algorithm 1: Check Bypassing Threads

/* bypassChecking(i,j): Check if thread j bypasses the conditional loop i */
if BP(i) =6 0 then
    /* For each new PC, check if the current thread j bypasses the  
       loop i */
      if PC = BP(i) then
          /* Set thread j as a bypassing thread and exclude it from loop   
            execution*/
            bypass(j)=1;
            sync(j)=0;
end if
end if
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Algorithm 2: Assemble Threads

/* threadAssembly(i): Assemble threads for sync loop i. */
/* The total number of threads is m.*/
/* For instruction address PC, PCBLK is the block address.*/
for each new PC do
     if PCBLK = AP(i) then
           /* Set current thread j as a sync thread */
           sync(j)=1;
          /* Get the number of sync threads, S */
          S = getSyncThreadsNum();
          /* Get the number of bypassing threads, P */
         P = getBypassingThreadsNum();
 
         /* If first thread to arrive at AP, initiate prefetching */
         if S = 1 then
             prefetch(AP(i), LP(i));
         end if
         /* If all threads not synced, stall the current thread */
         if S < m−P then
              ready(j)=0;
         else
               /* If all threads synced, enable loop execution */
              for every thread, k do
                 if sync(k)=1 then
                     ready(k)=1;
                 end if
               end for
               loop-en=1;
           end if
       end if
   end for

Algorithm 3: Sync Loop Execution

 /* Execution of sync loop i.*/
 while loop-en=1 do
        for each new PC do
              /* If the current thread completes the loop, reset the thread
              sync bit. */
              if PC=SP(i) then
                   /* Reset the thread sync bit */
                   sync(j)=0;
                   /* Get the number of completed threads, F */
                   F = getFinishedThreadsNum();

                    /* When all threads complete the loop, exit from the sync
                    loop execution*/
                        /* Else stop the thread and switch to the next sync thread */
                   if F = S then
                       loop-en=0;
                       lock-en=0;
                       /* Set all sync threads ready */
                       for every thread, k do
                            if sync(k)=1 then
                               ready(k)=1;
                        end if
                   end for
               else
                    ready(j)=0;
               end if
            end if
        end for
end while
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Algorithm 4: Prefetching Control

/* Prefetch from block a to b for sync loop execution */
A=a;
/* On each clock cycle, */
while A <= b do
     /* If prefetch buffer is not full and no memory read is currently
     happening, send a memory access request for block A */
     if (buffer not full) and (no mem read) then
          memRequest(A);
          A = A+1;
      end if
end while
/* if all the memory requests are complete, lock the cache */
if A = b+1 then
        lock-en=1;
end if

Algorithm 5: Cache Controller

/* When block A misses in the cache, send the request to memory
request queue (MRQ). IF A already exists in MRQ, only add the
thread ID to the existing entry. Else, add the whole entry.*/
if miss(A) then
      MRQ(A)
end if

/* Dispatch requests to memory on each memory access cycle */
/* If the memory request queue (MRQ) is not empty*/
if MRQ is not empty then
           for every block address in MRQ, B do
                   /* if the request is not restricted by cache locking, send the
                   request on to the memory bus */
                   if (lock-en =0) or (lock-en=1 and (B< SP or B> LP)) then
                           accessMem(B);
               end if
        end for
end if

/* On reading block from memory address C */
/* Reset the mem-request-field and the related threads ready */
mem-hit(C)=1;
        for every entry i in MRQ do
            if MRQ(i,address)=C then
                ready(MRQ(i,thread))=1;
                MRQ(i)=0;
           end if
end for

Algorithm 4 describes the prefetching control. There are two 
registers associated with the prefetching unit. The prefetch buffer sends 
its state (full/not full) to the prefetch unit. It also receives the current 
memory read state mem read/no mem read from the cache controller.

When prefetching is enabled, the prefetching unit sends the memory 
requests every time the buffer state is not full and the current memory 
read state is no mem read. The unit then monitors the completion of 
each request. When the last block is cached, the unit enables cache 
locking (lock-en=1). In the algorithm, a, b and A represent memory 
block addresses.

Algorithm 5 shows the operation of the instruction cache controller 
to manage access to the instruction memory. The memory request 
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queue (MRQ) resides in the cache controller. As shown in Figure 4(c), 
it consists of a list of memory block addresses waiting to be fetched 
into the cache and IDs of threads that issued each of these requests. 
In Algorithm 5, MRQ(i,address) represents the block address at the 
ith entry of the MRQ whereas MRQ(i,thread) represents the thread 
IDs at the ith entry of the MRQ. A, B and C represent memory block 
addresses. The algorithm consists of three parts: 1) adding a request 
to the MRQ upon a cache miss, 2) dispatching requests from MRQ to 
the memory, and 3) reading a block into the cache.

Experiments and Results

To evaluate our design, we set up a simulation platform, as shown 
in Figure 5. Our baseline design utilizes a five-stage single pipeline 
that implements the PISA [22] instruction set architecture. The multi-
threaded processor can handle a maximum of four independent 
threads. It consists of a one-level instruction cache.

For a given application, its loop information can be extracted 
from profiling, and this information is used to configure thread 
synchronization control. Program and data binaries obtained by 
compiling the application are placed in instruction and data memories 
of the multi-threaded processor hardware model. For profiling and 
compilation purposes Simplescalar [22] tool set is used as it can 
natively emulate the PISA instruction set.

The area, power and delay of hardware components are estimated 
by Synopsys Design Compiler [23] with the TSMC Standard 65 nm 
Cell Library [24]. The same 65 nm technology is also adopted for 
our memory model. The critical path delay (2.2 ns obtained from 
synthesis) is used to determine the clock cycle time. The time and 
energy consumption per memory access is obtained by CACTI [25] 
for different memory sizes. Multi-threaded executions are simulated 
with the Modelsim simulator [26], from which CPI, cache misses and 
thread switchings are obtained.

Table 2 shows the kernel benchmarks used in our experiment. 
Those kernel benchmarks can be found in many applications in the 
areas of graphic processing, signal processing and cryptography. 
The first column of the table lists the benchmark names. Their 
abbreviations and code sizes in kilobytes are given respectively in 
the second and third columns. The last column shows the cache size 
selected for each of the benchmarks. The choice of the cache size is 
dependent on the size of the available frequent loops and we select the 
minimal cache size required to fully hold the sync loops. For the given 
set of benchmarks, the sizes of the small caches used are 128-bytes, 
256-bytes and 512-bytes.

The latency and dynamic energy consumption per memory access 
estimated by CACTI are shown in Table III. For the access latency (in 
nanoseconds, ns), the equivalent number of CPU clock cycles (cc) is 
also given in Column 3 of the table.

We incorporate the memory access delay cycles into the processor 
hardware model simulation in ModelSim. For each benchmark, we 
simulate the application execution using three execution methods:

1.	 Single threaded execution (ST),

2.	 Baseline multi-threaded execution (MT), and

3.	 Multi-threaded execution with sync loop (MT-Sync).
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In the ST execution, the threads execute in the pipeline sequentially 
(ie. thread n starts to execute only after thread n-1 finishes its 
execution). Since there is no interleaving of threads, every time a 
cache miss occurs the pipeline will go idle until the memory access 
finishes. MT is implemented on a baseline multi-threaded processor 
with the round-robin thread selection policy and MT-Sync is 
implemented on the same multi-threaded processor with hardware 
extensions for synchronized thread execution on frequent loops. For 
a given application, the working set of all three execution methods is 
the same.

Two typical cache configurations: direct mapped (1-way) and 
2-way set associative cache are implemented in each of the three 
designs. Since the cache size is small, higher associative caches may 
give diminishing returns on energy savings. Therefore they are not 
considered here.

Memory cache significantly impacts the power consumption 
of the processor. Increase in power consumption depends on the 
configuration of the cache as well as the multi-threaded processor 
design. Table 4 shows the total power (in milliwatts, mW) of MT and 
MT-Sync processor designs with and without a cache and percentage 
increase in power consumption caused by the addition of caches. Here 
we consider six cache configurations used by the benchmarks of this 
experiment. The total power is the aggregate of total dynamic power 
and cell leakage power.

As can be seen in the table, for all cache configurations, the increase 
in power consumption caused by the addition of the cache is significant 
ranging from 18.77% to 25.87% for the 128-byte caches, 34.45% to 
48.18% for the 256-byte caches and 65.54% to a whopping 83.82% for 
the 512-byte caches. This shows the rapidly increasing impact of cache 
size on the power consumption of the system. This motivates the need 
for the use of small caches for low power processors.

Figure 5: Experimental Setup.

Benchmark Abrv. Code Size
(KB)

Cache Size
(Byte)

Discrete Cosine Transform DCT 1.09 128

Matrix Multiplication MM 0.39 128

Matrix Inversion MI 2.77 128

LU Matrix Factorization LU 1.16 128

Cholesky Matrix 
Decomposition

CHL 1.48 128

Gaussian Elimination GE 1.29 128

Radix Sorting RS 2.77 128

Fast Fourier Transform FFT 1.80 256

System of Linear Equations LE 1.86 256

AES Encryption AES 7.48 512
Table 2: Benchmarks

Memory Size
(MB)

Access Latency Energy
(nJ)(ns) (cc)

50 9.19 5 0.89

100 11.98 6 1.10

150 14.30 7 1.50

200 17.59 8 1.54

250 19.75 9 1.81

300 21.94 10 2.13

350 24.82 12 1.61

400 27.01 13 1.76

450 29.23 14 1.92

500 31.42 15 2.08
Table 3: Latency and dynamic energy consumption per memory acess
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Similarly, implementation of the MT-Sync design introduces extra 
costs to the system in terms of power consumption and area. The 
last row of Table 4 shows the percentage increase in total power of 
MT-Sync implementation compared to that of MT. These additional 
power consumption costs lie in the range of 4.41% to 10.47% for the 
considered cache configurations. However, the savings due to the 
cache miss reduction from MT-Sync design outweigh these overheads, 
leading to an overall improvement on design energy efficiency.

 Table 5 shows the on-chip area of MT and MT-Sync processor 
implementations. The last row of the table shows percentage increase 
in area caused by the synchronization hardware. It can be observed 
that percentage area increase ranges from 3.85% to 4.25% depending 
on the cache con-figuration.

As can be seen from Table 3, the memory access latency and energy 
consumption per access (hence the performance and the energy 
consumption of the overall system) vary with the memory size. In 
the next two subsections we analyse the effectiveness of MT-Sync 
execution in terms of performance and energy consumption under 
two instruction memory size settings; fixed memory size and varied 
memory size.

Experiments on designs with fixed memory size

We first test the designs with a fixed off-chip instruction memory 
size. For this experiment we select a moderate memory size of 300MB 
from the list given in Table 3. For this size, each memory access takes 
10 clock cycles. The CPI, cache misses, thread switchings, and energy 
consumption data obtained from simulations with a direct mapped 
cache for each benchmark under three different designs, ST, MT, and 
MT-Sync, are shown in Figures 6(a), 6(b), 6(c), and 6(d), respectively. 
The average values of each of the measures over all benchmarks are 
also presented in the last bar group (labelled as AVG) in each figure. 
For a neat presentation, in Figure 6, cache miss, thread switching, and 
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energy consumption are normalized to the ST design, but the actual 
data (namely, the number of cache misses, the number of thread 
switchings, and the energy consumption in μJ) for average values are 
also given inside the brackets in the figure.

The energy consumption is the sum of energy consumed by the 
processor and the memory, as given in the formula below.

                                                                                                  (2)

where E stands for the energy consumption; P is the total power 
consumed by all components, except the memory, in the processor 
system (Figures 4), T is the application execution time; e is the energy 
consumption per memory access, and m the cache misses. For every 
application, ST, MT and MT-Sync executions process the same data 
set. Based on the same data set, we are able to compare the three 
designs in terms of CPI, cache misses, switching counts, and energy 
consumptions, as given in Figure 6.

From Figure 6(a), we can see that the MT design under-performs, 
with an average CPI of 2.26, higher than the values of 2.09 and 1.41 
from the ST and MT-Sync designs. This is due to the extra cache misses 
incurred by the thread execution, which is verified by the data shown 
Figure 6(b). In most cases, MT has a higher cache misses than other 
two designs and on average it is 35% higher than the ST execution. On 
the contrary, the MT-Sync design reduces the cache misses by 27% as 
compared to the ST design. It can also be observed from Figure 6(c), 
the MT-Sync design incurs less thread switchings than the MT design 
where about 46% average saving can be achieved.

The improved performance and reduced cache misses help reducing 
the energy consumption. As can be seen from Fig-ure 6(d), the MT-
Sync design consumes less energy than MT and ST designs; for MT, in 
most cases extra energy consumption has been incurred. The average 
energy consumption of MT-Sync is 32 µJ, considerably lower than 

CPU with Cache (Six Configurations)

CPU
Only

128 Bytes 256 Bytes 512 Bytes

1-way 2-way 1-way 2-way 1-way 2-way

MT Design

Total Power (mW) 5.21 6.18 6.30 7.00 7.07 8.62 8.64

Increase from CPU Only(%) - 18.77 21.03 34.45 35.79 65.54 65.86

MT-Sync Design

Total Power (mW) 5.24 6.56 6.59 7.70 7.76 9.58 9.63

Increase from CPU Only(%) - 25.19 25.87 47.10 48.18 83.00 83.82

Increase from MT(%) 0.59 5.69 4.41 9.13 8.90 9.89 10.47

Cache Configuration

128 Byte Cache 256 Byte Cache 512 Byte Cache

1-way 2-way 1-way 2-way 1-way 2-way

Area of MT (µm2 ) 200349 201704 213250 215049 238684 241378

Area of MT-Sync (µm2 ) 208863 210187 222134 223709 248539 250680

Area Increase (%) 4.25 4.21 4.17 4.03 4.13 3.85
Table 5: Comparison of area cost of MT and MT-sync processor designs.

Table 4: Comparison of total power consuption of MT and MT-sync processor designs and impact of cache on power consuption

E P T e m= ∗ + ∗

https://doi.org/10.15344/2456-4451/2018/131


Int J Comput Softw Eng                                                                                                                                                                                           IJCSE, an open access journal                                                                                                                                          
ISSN: 2456-4451                                                                                                                                                                                                        Volume 3. 2018. 131                                   

those from ST (54 54 µJ) and MT (80 µJ) However, with application 
FFT, although there is a 13% improvement in performance, the 
high number of cache misses lead to more energy consumed. The 
increased number of cache misses is caused by the existence of ping-
pong effect due to ineffective thread interleaving at a number of points 
outside of the frequent loop execution. this issue is mitigated by 
using 2-way set associative cache as manifested by the results shown 
in Figure 7 for the designs when 2-way associative cache is used.

Compared to the 1-way cache, the 2-way cache improves the 
performance (CPI, caches misses, thread switchings) of both MT and 
MT-Sync designs except in the case of AES. On average, MT-Sync 
offers the highest overall performance and lowest energy consumption 
among the three designs.
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Experiments on designs with varied memory size

The size of the off-chip instruction memory can have a significant 
effect on performance and energy efficiency. As the memory access 
penalty varies with the memory size, the thread interleaving patterns, 
hence the execution time and number of misses vary. Moreover, large 
memories consume more power pushing up the energy consumption. 
The size of the off-chip memory depends on the applications run on 
the system and the overall system architecture. In these experiments 
we focus on single building block embedded processors that go 
in large multiprocessor systems. At this point, our mechanism is 
oblivious to the architecture of this multiprocessor system; hence it is 
infeasible to specify an exact memory size. Therefore, for fairness, we 
investigate the effectiveness of our synchronization design for a range 
of possible memory sizes.

Figure 6: Results of Designs with 300MB Memory and 1-Way Cache: (a) CPI (b) Cache Misses (c) Thread Switching Count (d) 
Energy Consumption
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In order to do this, we repeat the same set of experiments for designs 
under ten different memory sizes, ranging from 50MB to 500MB as 
shown in Table 3. In these experiments, a large set of data for CPIs, 
cache misses, and thread switchings are collected.

To introduce the metrics used to analyse the variations in 
performance and energy consumption, we use one benchmark as 
an example. Table 6 lists the CPI readings for the bench-mark, LE. 
For ease of observation, the data in the table are also presented in 
Figure 8. As can be seen in the figure, generally, the CPI shows an 
increasing pattern with the memory size (due to increased memory 
access time) for all designs. Occasional CPI drops can be attributed to 
the drops in cache misses due to the changes in the thread interleave 
execution pattern. To save the space and facilitate the design 
comparison, we apply the linear regression on the experiment data 
for each benchmark on a given design. For example, the dashed line
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in Figure 8 is the regressed CPI linear line (linear trend line) of 
the MT-1way design for LE . We use the slope of the linear line to 
evaluate the effectiveness of a design to mitigate the impact of 
long memory access penalty on the overall performance, and we 
use the average value to consolidate the collected data from the 
experiment. We also calculate the regression error of the actual 
CPIs from the linear trend line. The lower the regression error, 
the more linear the actual CPI increase, hence more predictable.

These three values: regression error (Reg. Error), linear slope, and 
the average, for LE application are shown in the last three rows of 
Table 6.

These three values: regression error (Reg. Error), linear slope, and 
the average, for LE application are shown in the last three rows of 
Table 6.

Figure 7. Results of Designs with 300MB Memory and 2-Way Cache. (a) CPI (b) Cache Misses (c) Thread Switching Count (d) 
Energy Consumption.
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By analysing the results shown in Table 6 and Figure 8, following 
conclusions can be made:

1.	 Average CPI values show that the MT-Sync execution produces 
higher performance than both ST and MT executions.

2.	 The slopes of the linear trend lines show that for every cache 
configuration, when memory size increased, the increase of the 
CPI from the MT-Sync execution is slower than those from ST 
and MT.

3.	 The error of linear regression of the MT-Sync execution is 
less than that of MT execution for both cache config-urations 
which goes on to suggest that performance of MT-Sync is more 
predictable than that of MT.
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Similarly, we calculate regression error, linear slope, and the average 
values for all benchmarks under ST, MT and MT-Sync designs 
implemented with direct mapped (1-way) and 2-way set associative 
caches. Table 7 shows the complete set of the calculated values. In 
this table, Cache Assoc. is the number of ways in a set, App. stands for 
the application name, Avg. the average CPI, and Reg. Error the linear 
regression error.

The results of the designs with 1-way cache are given in the top 
half of the table and the results of the designs with 2-way cache are 
given in the bottom half of the table. The average values over all 
benchmarks are given in the last row (as highlighted) in each half. As 
can be seen from this table, with the 1-way design, MT-Sync offers 
higher performance than other two designs over the varied memory 
sizes, with an average CPI of 1.39, lower than those from ST (2.09) 

IM Size ST MT MT-sync

(MB) 1-way 2-way 1-way 2-way 1-way 2-way

50 2.19 2.57 2.19 1.40 1.33 1.21

100 2.52 2.85 1.98 1.38 1.43 1.24

150 2.63 3.14 2.20 1.55 1.44 1.28

200 2.85 3.43 2.60 1.75 1.77 1.41

250 3.07 3.71 2.47 1.68 1.64 1.44

300 3.29 4.00 3.21 1.84 1.86 1.58

350 3.62 4.43 3.76 2.07 1.92 1.60

400 3.84 4.72 4.03 2.35 2.36 1.92

450 4.06 5.00 3.92 2.43 2.09 1.77

500 4.28 5.29 4.83 2.48 2.22 1.86

Reg. Error 0.0356 0.0031 0.0222 0.0071 0.0087 0.0048

Slope 0.0046 0.0062 0.0062 0.0027 0.0022 0.0016

Average 3.24 3.91 3.12 1.89 1.81 1.53
Table 6: CPIs of banchmark LE under 128 byte instruction cache

Figure 8: Linearly Increasing CPI Trend with Instruction Memory Size of LE Benchmark (128 Byte Instruction 
Cache).
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and MT (2.31) When the cache associativity is increased to 2-way, 
the CPI of ST is increased; this is due to increased cache misses and 
for each miss, the related pipeline stall time cannot be utilized in 
the single thread execution. But since the stall time can be exploited 
in the multi-threaded execution, the CPIs of MT and MT-Sync are 
reduced. Moreover, based on the regressed CPI linear line, MT-Sync 
has the smallest slop, which means it can effectively mitigate the long 
memory access penalty for large memories, and this trend is also 
more predictable than that of the MT execution because of the smaller 
regression error.

Table 8 shows average (over 50MB-500MB different memory sizes) 
cache misses, energy consumption (in micro-joule), and the switching 
count for the multi-threaded execu-tion. As can be seen from the table, 
MT sometimes incurs extra cache misses as compared to the single 
threaded execution, but with thread synchronization (MT-Sync), the 
cache misses are reduced. Overall, MT-Sync consumes less energy (an 
average of 29.41µJ) than the ST (60.07µJ) and MT (69.28µJ) designs. 
It can be also observed that both MT and MT-Sync benefit from the 
2-way cache, with the reduced cache misses, thread switching count, 
and energy consumption.

Conclusion

Cache and multi-threading are two typical design techniques 
for performance improvement. But when they are implemented in 
a processor, they can adversely interfere with each other, leading 
to reduced performance and increased cache misses and power 
consumption.
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In this work we investigated multi threaded processors with an 
instruction cache for applications that have embarrassing parallelism 
(the same code can be executed by a number of in-dependent threads 
on different data sets). Such multi-threaded processors can be used as 
building blocks in constructing a large multiprocessor system.

We targeted the frequent instruction loops (sync loop) for high 
temporal locality. Threads are synchronized on the sync loop. During 
the sync loop execution, the sync threads can be interleaved with non-
sync threads, and the cache locking is used to prevent the non-sync 
threads from evicting the cached sync loop instructions.

We presented a micro-architectural level thread synchroniza-
tion design to synchronize threads and interact with cache locking 
for sync loop execution. The thread synchronization design uses a 
prefetch based cache locking mechanism (PTCL) so that high cache 
locality can be achieved even with small caches. To reduce the thread 
switching overhead, we applied a parallel and tuck-in (PTL) approach 
for thread switching control with which zero-switching delay can be 
achieved with the explored processor.

To verify the effectiveness of our design, we run experiments on a set 
of kernel applications. The experiment results on a set of benchmarks 
show that the thread synchronization indeed helps reducing cache 
misses, avoiding unnecessary thread switchings and improving 
overall performance and energy efficiency. For the designs with 1-way 
cache and 300MB memory, an average of 26% baseline energy can be 
saved as compared to the 37% energy overhead caused by the baseline

Cache
Assoc.

Cache
Size (B)

App. ST MT MT-Sync

Avg. Slope
X 103

Reg.
Error

Avg. Slope
X 103

Reg.
Error

Avg. Slope
X 103

Reg.
Error

1-way 128 DCT 2.45 3.1 0.0153 2.57 2.4 0.4126 1.20 0.3 0.0648

MM 1.78 1.6 0.0082 2.28 5.8 0.5322 1.13 0.3 0.0106

MI 1.33 0.7 0.0035 2.26 7.0 0.0070 1.02 0.1 0.0001

LU 2.64 3.5 0.0172 2.70 4.1 0.4588 1.94 0.9 0.1689

CHL 1.17 0.4 0.0018 3.65 12.4 0.8176 1.06 0.1 0.0149

GE 1.72 1.5 0.0076 2.90 6.1 0.2577 2.14 3.8 0.2805

RS 3.53 5.5 0.0435 1.81 1.1 0.1664 1.51 0.8 0.1600

256 FFT 1.56 1.2 0.0060 1.98 3.4 0.0557 1.33 0.9 0.0373

LE 2.78 3.8 0.0188 1.53 1.1 0.0683 1.40 1.0 0.0641

512 AES 1.99 2.1 0.0104 1.36 0.5 0.0852 1.16 0.4 0.0228

AVG 2.09 2.3 0.0132 2.31 4.4 0.2862 1.39 0.9 0.0824

2-way 128 DCT 2.45 5.2 0.0258 2.57 2.6 0.2179 1.20 0.5 0.0465

MM 3.08 4.4 0.0219 1.45 1.5 0.0351 1.13 0.3 0.0102

MI 1.33 0.7 0.0035 1.23 0.6 0.0006 1.03 0.1 0.0001

LU 3.38 5.0 0.0248 1.90 1.0 0.2446 1.51 0.3 0.0706

CHL 3.31 4.9 0.0243 1.20 0.4 0.0322 1.07 0.1 0.0108

GE 3.67 5.7 0.0283 1.97 2.4 0.0605 1.56 1.2 0.0549

RS 3.50 5.3 0.0264 1.82 1.5 0.0578 1.48 1.0 0.0957

256 FFT 3.00 4.2 0.0211 1.62 2.3 0.0642 1.28 0.9 0.0432

LE 2.99 4.2 0.0210 1.37 1.3 0.0421 1.32 1.1 0.0414

512 AES 2.45 3.1 0.0153 1.09 0.4 0.0253 1.12 0.4 0.0273

AVG 2.97 4.4 0.0219 1.68 1.5 0.0839 1.29 0.6 0.0415
Table 7: CPI regression data over varied memory size
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MT design, and the energy savings become more significant when the 
memory size is increased.

It is also demonstrated that the synchronization helps to mitigate 
the impact of long memory access delay on the overall performance, 
making the MT-Sync design more scalable than the traditional multi-
threaded design.
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