
A Low-Energy Multi-Threaded Processor Design for Application Specific
Embedded Systems

Publication History:

Received: January 22, 2018
Accepted: March 15, 2018
Published: March 17, 2018

Keywords:

Multi-threaded Processor, Thread
Synchronization, Instruction Re-
use, Energy Efficiency

Original Article Open Access

Introduction

It is ideal for a pipelined processor to run at its full speed when
executing an application. However, due to a variety of pipeline
hazards, especially the long memory access operations, an instruction
thread executed in a pipeline will go through frequent stalls. To
lower the long pipeline stall caused by the memory access, we can
use cache. Cache reduces the number of memory accesses and
effectively shortens the processor stall time. To reduce the impact
of execution stall on performance, we can exploit the multithreaded
execution. With multiple threads available, the pipeline idle time due
to one thread stall can be used by other threads, hence the pipeline
throughput is increased.

However, when both enhancements (cache and multi-threaded
execution) are implemented in the processor system, the synergy
may not necessarily exist. Take the problem shown in Figure 1 as an
example. Assume two threads (T1 and T2) execute a code segment
whose control flow graph is given in Figure 1(a). The code consists
of five basic blocks1, B1-B5. Among them, B2 and B4 are loop blocks
(the loop counts are shown beside the blocks). Assume that each basic
block can be fully cached and the cache is direct-mapped and can
hold maximally two blocks. Then, blocks B1, B3 and B5 will compete
for one cache location, and blocks B2 and B4 for the other location.

Assume each basic block takes the same amount of time to execute
and the memory access delay (i.e. cache miss penalty) is three times
the block execution time. The execution timing of each individual
thread is shown in Figure 1(b), where each timing block in the
diagram represents the execution time of a basic (instruction) block.
For a loop block, the block execution time is multiplied by the number
of loop iterations for the overall execution time. The execution trace
for thread T1 is B1-B2-B4-B5, and for thread T2 is B1-B2-B3-B5. The
two threads have a total execution time of t1+t2. If the two threads
are interleaved, without considering any potential cache competition
issues between threads, the ideal multi-threaded execution would
be like in Figure 1(c). The shaded blocks show the time spent on

*Corresponding Author: Dr. Hui Guo, School of Computer Science and
Engineering, The University of New South Wales, Sydney, Australia; E-mail:
huig@cse.unsw.edu.au

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded
Processor Design for Application Specific Embedded Systems. Int J Comput
Softw Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

Copyright: © 2018 Wickramasinghe, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

switching execution to the other thread. The overall execution time is
t3 and (t1+t2)≥t3 >max{t1, t2}. However, since the two threads compete
for locations in the cache, one thread may evict the instructions
cached by another, and the real threaded execution turns out to be
the one that is shown in Figure 1(d). As can be seen, the number
of cache misses, hence the thread switching frequency, is actually
increased, so is the execution time (t4 > t3). Cache misses lead to
accesses to memory. Since memory access is power consuming,
significant power will be consumed. In addition, the thread
switching incurs overhead, which further adds woes to the design.

In this paper, we investigate the micro-architectural level solutions
to make the cache behave in harmony with the threaded execution in
the pipeline. Since instruction cache misses account for a considerably
higher performance impact than data cache misses [1] due to frequent
instruction fetches, we focus this study on the instruction cache. We
target applications that offer embarrassing parallelism where the same
code can be executed by a number of independent threads on different
data sets. Such applications can be found in real-world computing
problems such as encryption [2], scientific calculation [3], multimedia
processing [4] and image processing [5]. Those large computing
problems demand designs of multiprocessor systems that can be built
on the small building-block processors like the one we discuss in this
paper, as is illustrated in Figure 2. Such embedded processors are
usually constrained with resources to reduce energy and area costs.
We focus on the multi threaded processor with a single pipeline and a
small cache that processes light weight applications and we present a
thread synchronization approach that synchronizes thread execution

International Journal of
Computer & Software Engineering

Mahanama Wickramasinghe and Hui Guo*
School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

 Wickramasinghe, et al., Int J Comput Softw Eng 2018, 3: 131
 https://doi.org/10.15344/2456-4451/2018/131

Abstract

Energy consumption is a critical issue in embedded systems design. A basic way for an embedded
processor system to be energy efficient is to complete execution early and consume low power. Multi
threaded processors interleave thread execution, reducing the processor’s idle time, hence the overall
execution time. Caches moderate the long and power hungry external memory accesses, allowing for both
performance improvement and power saving. However, when the two techniques are applied together,
the efficiency of the design may not be as high as expected. The multi threaded execution can adversely
interfere cache operations, increasing cache misses and leading to overall performance loss and large
energy consumption. This paper presents a microarchitecture level design to enable the synergy of the
two design techniques for embedded processors. Particularly we focus on a single pipeline processor with
an instruction cache for applications that offer embarrassing parallelism. Such a design can be used as a
building block processor for large computing systems. We propose a thread synchronization and cache
locking scheme to allow cached instructions to be maximally reused by all threads. The experiments on
a set of applications show that for the designs with 1 way cache and 300MB memory, an average of 26%
baseline energy can be saved, and the energy savings become more significant when the memory size is
increased.

1A basic block contains a sequence of instructions. If the first instruction in the basic block
is executed, the rest of the instructions will be sequentially executed.

https://doi.org/10.15344/2456-4451/2018/131
https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

on frequent loops to enhance loop instructions reuse. We introduce a
novel cache design with a cache locking scheme that provides a near
100% cache hit for synchronized thread executions and we apply the
thread switching design introduced in [6] that parallelizes tasks in the
thread scheduling and tucks-in execution switching into the processor
pipeline to eliminate the thread switching performance overhead.
Overall, our design is small, low cost, yet of high performance and
energy efficiency.

Related Work

Thread synchronization and cache locking have been studied in
several areas. Works on thread synchronization can be commonly
found at the system level implementations, where operating system or
special firmware coordinates and synchronizes threads execution to
ensure the overall applications’ functionality and performance [7-9].

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 2 of 15

Synchronizing threads to increase instruction reuse (hence reducing
cache misses), has also been investigated recently in some application
areas, such as database processing, cryptography, image processing
and multimedia processing. This section is aimed at discussing some
of these studies that are relevant to our work.

Atta et al. in [10] investigated online transaction processing
(OLTP), where each transaction can be regarded as an independent
execution thread. Some transactions execute similar functional
code. They proposed to synchronize those similar transactions
to optimize instruction cache reuse for better performance. They
presented a hardware level synchronization scheme, STREX, that is
fully transparent to the program-mer. This scheme exploits similar
behavioural patterns within transactions to attain an optimal
instruction reuse level in a single core. The points at which the

Figure 1: Motivational Example (a) code executed by two threads (b) single thread execution (c) ideal threaded execution (d) real
threaded execution.

Figure 2: An Example of System Structure with Building Block Processors.

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

transaction executions are switched, are dynamically detected. STREX
groups transactions of the same type into teams and places them in
a queue for a CPU. The first transaction of the queue is flagged as
the lead and a counter named phase ID is used to indicate the code
section that is synchronized. The lead transaction executes first and
fetches all instructions of a synchronization section into the cache.
The cached instruction section can then be used by the following
transactions, avoiding repeated memory accesses. Transactions are
executed in a round robin manner. When the current synchronization
section is finished, the lead transaction increments the phase ID and
moves execution to the next section. Once all transactions of a team
finish execution, the processor starts executing the transactions of
another team.

A similar hardware level thread synchronization mechanism was
also proposed by Nickolls, et al. [11]. In their work, application
threads that execute the same pool of instructions on different data
sets are grouped together into an array called Cooperative Thread
Array (CTA). A sequence of synchronization points called barrier
instructions are predetermined for each thread group. Barrier
instructions are detected by hardware and used to suspend execution
of threads until a specified number of threads reach that barrier point.
This approach is designed for large, high power consuming graphic
processing subsystems where very high thread level parallelism is
available. Utilization of synchronization points (SP) has also been
explored in the recent work of Foo [12]. In this work, synchronization
is used to manage access to shared resources by simultaneous threads.
Every thread in the system pauses at the SP and once all the threads
are arrived at that SP they start executing simultaneously. However,
due to varying execution flows controlled by branch instructions,
some threads may miss a specified SP. When this happens the threads
that miss the SP are flagged. Threads that are paused at the SP will
wait only for the non-flagged threads. In order to synchronize flagged
threads, an extra SP is set at the return address of the branch. Apart
from the above mentioned work, hardware approaches to provide
synchronized access to data cache are also studied in some recent
research work. Zhang, et al. [13] examined data reuse through
thread scheduling for data centres that concurrently execute multiple
dataintensive threads. They use a technique, called Cache Matching,
to capture data locality within and across threads. With their method,
parts of in-coming cache request sequences are stored in a small
buffer and interleaved such that a high cache hit rate is attained.
Huang, et al. [14] devised a dynamic thread scheduler to co-optimize
data cache locality and load balance in general purpose graphic
processing units (GPGPU) that implement an on-chip shared cache
structure. Rogers, et al. [15,16] also proposed a hardware mechanism
called cache-conscious wave front scheduling (CCWS) to synchronize
accesses to the first level data cache to avoid potential cache thrashing.
It helps to reduce power consumption and is especially effective for
massively multi threaded processor architectures such as GPUs. All
of the above designs use hardware to control thread synchronization
at the task level for cache locality. In this paper, we consider thread
synchronization at the loop execution level and the hardware control
of thread synchronization can closely work with cache to achieve
high reuse of cached code. Instruction cache locking is a technique
employed in our work to prevent loop instructions from getting
evicted during loop execution. This technique has been discussed
in several studies, where cache locking is mainly used in reducing
the timing unpredictability in hard real-time program execution.
By locking certain data in cache, the fluctuation of the related cache
misses and memory access time can be controlled. Liang and Mitra
[17] proposed a static instruction cache locking algorithm that uses

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 3 of 15

the cache temporal re-use profile of a program to determine the
most beneficial instruction cache blocks to be locked. In a similar
work Liu et al. [18] presented a compiler level instruction cache
locking mechanism where instructions to be locked in the cache
are determined by the program’s statistical execution information
and the locking is statically implemented. With this approach, cache
contents to be locked are fetched into the cache before the program
execution and remain in the cache until the execution finishes. In
[19] Qui, et al. proposed a dynamic instruction locking mechanism
that operates in two phases; offline and online. In the offline phase,
candidate locking regions are selected based on the weighted control
flow graph of the program and the locking profit of each cache block.
Candidate regions include loop and non- loop instruction blocks.
In the online stage, a branch predictor fetches the cache locking
routine instructions of the regions that are predicted to execute
in the near future into a buffer. This removes the need to place the
cache locking instructions inside the program. Another recent work
in line with instruction cache locking is by Anand and Barua [20].
Their mechanism identifies points in the program where a significant
shift in the instruction locality occurs and computes the cache lines
required to be locked at each point. However, this approach requires
special locking instructions inserted into the respective program
points. In order to prevent this from altering the original program
layout which eventually invalidates the program point calculations,
the authors have employed the trampolines approach proposed by
Buck and Hollingsworth [21].

All of the above instruction cache locking mechanisms are either
software level approaches that require customized instructions
to be added into the application thread and/or involve complex
computations to be performed before the execution of a program.

In our work, we incorporate thread synchronization and instruction
cache locking into the multi threaded execution in a single pipeline for
high instruction cache locality. Our approach is hardware based and
has a configurable synchronization control. It is purely transparent to
software, yet still provides some customization flexibility for a given
application. With our approach, high instruction cache locality can be
achieved even with a small size of cache.

Design of Thread Synchronization for High Instruction
Cache Locality

Usually loops account for a significant part of the overall execution
time. To improve the instruction cache locality, we aim at the
loops with a high execution frequency. We want thread executions
synchronized at such a loop so that once the loop is cached by one
thread, it is available in the cache for other threads, avoiding repeated
memory accesses.

An application can normally be represented by a control flow graph
(CFG) as illustrated in Figure 3(a). In CFG, a node represents a basic
block that contains a sequence of instructions. If an instruction in
the block is executed, all instructions of the block will be executed.
The CFG of an application shows how execution flows from one basic
block to another. We name such a block an instruction block, or IB.
Every instruction resides in a corresponding block in the memory.
An IB may occupy a number of memory blocks (MB). For example in
Figure 3(a), the instruction block B1 that contains three instructions
with addresses 0000 to 0010 given inside the block, will occupy two
memory blocks if each memory block holds two instructions. When
the IB is executed, the related MBs will be accessed.

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

To effectively capture the correlation of the thread execution and
memory access pattern, we use a memory trace graph (MTG),
where each node represents the set of MBs accessed for an IB. The
MTG diagram specifies how the execution walks over the memory
space from one MB to another. As an example, Figure 3(b) shows the
corresponding MTG of the CFG given in Figure 3(a). In this MTG,
each value in the node is the address of an MB, and each block holds
two instructions. As can be seen, two IBs can overlap on an MB in
MTG.

An early thread that comes to a loop for synchronization should
wait until other threads have arrived. When the loop is cached, it
will be locked until the loop is completed by other threads. We call
such a loop the sync loop, the thread that has arrived for the sync
loop execution the sync thread, and the point at which a sync thread
is waiting for other threads for next action a sync point. For thread
synchronization, multiple sync points may be needed. A proper
design of cache, cache locking and sync points are critical for the sync
loop execution, which is discussed below.

The effectiveness of cache locality is dependent on whether the
cache can hold the whole sync loop. For a given application, assume
the largest sync loop occupies M MBs in the memory, in order to have
a sync loop fully cached, the minimal cache size is,

 (1)

where is the ceiling function.

There are many sync loops in an application and some sync loop
sizes may be smaller or much smaller than the largest sync loop.
To allow for maximal cache availability to other non-sync threads,
during a sync loop execution, we only partially lock the cache for the
sync loop.

Cache locking can be performed on a block basis or on a segment
basis (a segment covers blocks that are required for the sync loop). In
the block-based locking, each block is individually locked. An extra

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 4 of 15

bit for locking state is required for each block in the cache.
During a sync loop execution, when a block is cached, its locking
bit is set. After the sync loop execution is completed, the cache
controller will reset all the locking bits to free the cache blocks
for different memory data. This design is not scalable as the
extra locking bit requirement may incur considerable amount of
resource overhead for a complicated application with a large cache.

For the segment based design, the whole section of blocks that hold
the loop are locked at the same time. After the segment is locked in the
cache, each time a memory access brings a block to cache, the block
location is checked against the lock section range. If it is within the
range, the write of the memory block to the cache is disallowed. This
design can be implemented with a fixed logic (two registers for the
start and end points of the cache segment plus a comparator), hence
scalable. We therefore use segment locking method in our design.

The cache segment is expected to be locked by the thread that
first executes the loop so that the loop instructions cached can be
reused by other sync threads. However, for a sync loop that contains
conditional execution paths, some instructions may not be executed
by the first thread, hence not be cached. This complicates the cache
locking control.

To ensure all instructions in a sync loop are cached, we employ
prefetching and a prefetch buffer in the cache design. We set threads
to be assembled at the first block of the loop and we call the address
of the first block the assembly point, AP. Once the first sync thread
arrives at AP, prefetching is activated and starts to fetch the loop
instructions into the buffer. The buffer serves as a temporal repository
so that the prefetched instructions will not be evicted from the cache
by other non-sync threads before the loop starts. The buffer can be
small but should be big enough to ensure the whole loop is cached
during the first sync loop execution. After all threads arrive at the AP,
the buffered instructions are transferred to the cache and the freed
buffer entries are refilled with new instructions by prefetching; Both
the instruction transfer and buffer refill can be performed in parallel
and this parallel processing also helps to reduce the buffer size2. When
the loop is fully cached, the cache segment related to the loop is
locked. We call this cache locking approach prefetching-then-cache-
locking, PTCL.

We use the address of the last memory block in the loop as the
locking point, LP. Once the prefetching passes the point, the loop is
immediately locked in the cache.

Upon completion of a segment locking, the cache locations of the
corresponding assembly point (AP) and locking point (LP) are written
to a register pair as the start and end point of the cache segment. In
case a new memory block is fetched, the cache controller checks its
mapped cache location. If it falls in the locked range, the new memory
block will not be cached.

For a sync loop on the conditional path, such as loop block B4
in Figure 3(a), some threads may skip the loop and take different
execution paths. Those threads should be dynamically detected and
excluded from the loop synchronization. We set the first instruction
on the path that is parallel to the conditional sync loop as a bypassing
point, BP. If a thread passes this point, it is removed from the sync
loop execution. There may be multiple parallel paths, hence multiple
passing points, for a sync loop.

Figure 3: CFG and MTG of an Application: (a) CFG (b) MTG

2
2

log M

S =

 
 

.  

2In our designs for a given set of applications, the buffer size is 32 bytes.

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

During the sync loop execution, when a thread finishes the loop,
the execution will switch to another thread. We use the address of the
last instruction of the loop as the control point for thread switching.
We call this control point the switching point, SP.

As an example, Table 1 lists the four sync point values for the two
loops B2 and B4 in Figure 3(a). Both AP and LP are block addresses,
and BP and LP are instruction addresses. Since B2 does not sit on a
conditional path, BP is not applicable to B2.

We apply the above synchronization design into the multi-threaded
processor design, which is detailed in the next section.

Multi-Threaded Processor With Sync Loop Execution

Our design is based on the multithreaded processor that takes zero
clock cycle for thread switching, proposed in [6]. The basic idea of this
design is to perform thread switching in parallel to thread scheduling
and keep the scheduling logic out of the critical path.

We extend the baseline design by adding the sync control unit and
modifications to the thread switching control and cache design, as
shown in Figure 4(a). The thread switching control now takes the loop
synchronization into account and the cache controller includes the
logic for prefetching and cache segment locking.

To dynamically control the sync loop execution, we use a table to
record the state of each thread as shown in Figure 4(b). Each thread

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 5 of 15

has a ready bit, sync bit, and a bypass bit for conditional loop
execution. We call this table the thread state table, TST.

The ready bit of a thread indicates whether the thread is ready
to execute. This bit is set under one of the three cases: 1) when the
memory request from the thread has been completed (i.e. the missed
block is now available in the cache), 2) when a sync loop is set to start,
or 3) when a sync loop is completed by all threads.

The ready bit is unset also in three cases: 1) when the thread
encounters a cache miss, 2) when the thread is stopped at a sync point
(AP/SP), or 3) The thread finishes its execution.

The sync bit of a thread is set when the thread execution has reached
the assembly point and it is unset when the thread finishes with the
sync loop. We use the sync bit to control the sync loop execution,
while the ready bit is used by the thread scheduler for the next thread
switching.

The bypass bit is used to identify whether the thread has taken an
alternative path bypassing a conditional sync loop. If so, the bit is set
and the thread does not participate in the sync loop execution. It is
unset when the sync loop is finished. Initially, the bypass bit is set to
zero. If loop bypassing happens by an instruction in the AP block, the
related thread will first stop at AP and later be detected when it passes
BP. When it passes BP, the bypass bit is set. The size of TST is decided
by the number of existing threads.

Since each thread can cause a cache miss, at a given moment there
may be multiple requests for memory access. These requests are
recorded in a memory request queue (MRQ), as shown in Figure
4(c). For each request, the thread that incurs the memory request and

Loop AP BP LP SP

B2 001 - 010 0101

B4 100 1011 101 1010
Table 1: Sync point value for loops B2 and B4 of figure 3

Figure 4: (a) Architectural Overview of the Multi-threaded Processor with Synchronized Loop Execution (b) Structure of Thread
State Table (c) Structure of Memory Request Queue (d) Structure of Sync Info Table

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

the address for the memory access are specified. An entry is reset if the
related memory data is fetched from the memory.

For a given application, there may be many sync loops. We use a
sync information table, SIT to store the sync points for such loops,
as shown in Figure 4(d). For each loop, AP, LP, SP and BP (for
conditional execution) are provided. A pointer is used to point to the
next sync loop. The SIT table can be reconfigured, which offers the
design flexibility for different applications.

The thread state table is updated by the sync unit, cache controller,
and the scheduler as elaborated below.

The sync unit takes as input the processor PC value and the sync
point values of a loop from the sync information table, and generates
the three control signals for the following purposes:

1.	 to update the thread sync state,
2.	 to start sync loop, and
3.	 to enable prefetching-then-cache-locking (PTCL).

The sync unit consists of three components: logic for checking
threads bypassing the conditional loop, logic for assembling
threads, and logic for starting the loop execution. The operations
of each of these components are specified in Algorithms 1, 2 and 3
respectively. The comment lines in the algorithms explain the related
operational steps. For readability and conciseness, functions are used
to hide some calculation details and their implementation should be
straightforward. For example, Function getSyncThreadsNum() can be
implemented by counting the number of threads that have the ready
bit equal to 1. Variables bypass(j), sync(j) and, ready(j) are bit values
given by the thread state table (TST).

In the three algorithms, PC stands for the current instruction
address from the processor. Since thread assembly uses a block
address as the assembly point (AP), the block address of the PC value,
denoted as PCBLK , is used in Algorithm 2.

As it is elaborated in Algorithm 2, when the first thread arrives
at AP, prefetching of the loop blocks starts. When all threads are
assembled, the sync loop execution is enabled (i.e. the control signal
loop-en is set). The control of the sync loop execution and prefetching
are detailed in Algorithms 3 and 4. Algorithm 3 describes how a
sync thread is executed. Function getFinishedThreadsNum() gets
the total number sync threads that have finished the loop. If there are
unfinished threads, the execution will switch to another unfinished
thread once the current thread completes. Function get Finished
Threads Num() is simply a counter that increments when a thread
reaches the SP and resets when the sync loop execution starts..

Algorithm 1: Check Bypassing Threads

/* bypassChecking(i,j): Check if thread j bypasses the conditional loop i */
if BP(i) =6 0 then
 /* For each new PC, check if the current thread j bypasses the
 loop i */
 if PC = BP(i) then
 /* Set thread j as a bypassing thread and exclude it from loop
 execution*/
 bypass(j)=1;
 sync(j)=0;
end if
end if

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 6 of 15

Algorithm 2: Assemble Threads

/* threadAssembly(i): Assemble threads for sync loop i. */
/* The total number of threads is m.*/
/* For instruction address PC, PCBLK is the block address.*/
for each new PC do
 if PCBLK = AP(i) then
 /* Set current thread j as a sync thread */
 sync(j)=1;
 /* Get the number of sync threads, S */
 S = getSyncThreadsNum();
 /* Get the number of bypassing threads, P */
 P = getBypassingThreadsNum();

 /* If first thread to arrive at AP, initiate prefetching */
 if S = 1 then
 prefetch(AP(i), LP(i));
 end if
 /* If all threads not synced, stall the current thread */
 if S < m−P then
 ready(j)=0;
 else
 /* If all threads synced, enable loop execution */
 for every thread, k do
 if sync(k)=1 then
 ready(k)=1;
 end if
 end for
 loop-en=1;
 end if
 end if
 end for

Algorithm 3: Sync Loop Execution

 /* Execution of sync loop i.*/
 while loop-en=1 do
 for each new PC do
 /* If the current thread completes the loop, reset the thread
 sync bit. */
 if PC=SP(i) then
 /* Reset the thread sync bit */
 sync(j)=0;
 /* Get the number of completed threads, F */
 F = getFinishedThreadsNum();

 /* When all threads complete the loop, exit from the sync
 loop execution*/
 /* Else stop the thread and switch to the next sync thread */
 if F = S then
 loop-en=0;
 lock-en=0;
 /* Set all sync threads ready */
 for every thread, k do
 if sync(k)=1 then
 ready(k)=1;
 end if
 end for
 else
 ready(j)=0;
 end if
 end if
 end for
end while

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

Algorithm 4: Prefetching Control

/* Prefetch from block a to b for sync loop execution */
A=a;
/* On each clock cycle, */
while A <= b do
 /* If prefetch buffer is not full and no memory read is currently
 happening, send a memory access request for block A */
 if (buffer not full) and (no mem read) then
 memRequest(A);
 A = A+1;
 end if
end while
/* if all the memory requests are complete, lock the cache */
if A = b+1 then
 lock-en=1;
end if

Algorithm 5: Cache Controller

/* When block A misses in the cache, send the request to memory
request queue (MRQ). IF A already exists in MRQ, only add the
thread ID to the existing entry. Else, add the whole entry.*/
if miss(A) then
 MRQ(A)
end if

/* Dispatch requests to memory on each memory access cycle */
/* If the memory request queue (MRQ) is not empty*/
if MRQ is not empty then
 for every block address in MRQ, B do
 /* if the request is not restricted by cache locking, send the
 request on to the memory bus */
 if (lock-en =0) or (lock-en=1 and (B< SP or B> LP)) then
 accessMem(B);
 end if
 end for
end if

/* On reading block from memory address C */
/* Reset the mem-request-field and the related threads ready */
mem-hit(C)=1;
 for every entry i in MRQ do
 if MRQ(i,address)=C then
 ready(MRQ(i,thread))=1;
 MRQ(i)=0;
 end if
end for

Algorithm 4 describes the prefetching control. There are two
registers associated with the prefetching unit. The prefetch buffer sends
its state (full/not full) to the prefetch unit. It also receives the current
memory read state mem read/no mem read from the cache controller.

When prefetching is enabled, the prefetching unit sends the memory
requests every time the buffer state is not full and the current memory
read state is no mem read. The unit then monitors the completion of
each request. When the last block is cached, the unit enables cache
locking (lock-en=1). In the algorithm, a, b and A represent memory
block addresses.

Algorithm 5 shows the operation of the instruction cache controller
to manage access to the instruction memory. The memory request

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 7 of 15

queue (MRQ) resides in the cache controller. As shown in Figure 4(c),
it consists of a list of memory block addresses waiting to be fetched
into the cache and IDs of threads that issued each of these requests.
In Algorithm 5, MRQ(i,address) represents the block address at the
ith entry of the MRQ whereas MRQ(i,thread) represents the thread
IDs at the ith entry of the MRQ. A, B and C represent memory block
addresses. The algorithm consists of three parts: 1) adding a request
to the MRQ upon a cache miss, 2) dispatching requests from MRQ to
the memory, and 3) reading a block into the cache.

Experiments and Results

To evaluate our design, we set up a simulation platform, as shown
in Figure 5. Our baseline design utilizes a five-stage single pipeline
that implements the PISA [22] instruction set architecture. The multi-
threaded processor can handle a maximum of four independent
threads. It consists of a one-level instruction cache.

For a given application, its loop information can be extracted
from profiling, and this information is used to configure thread
synchronization control. Program and data binaries obtained by
compiling the application are placed in instruction and data memories
of the multi-threaded processor hardware model. For profiling and
compilation purposes Simplescalar [22] tool set is used as it can
natively emulate the PISA instruction set.

The area, power and delay of hardware components are estimated
by Synopsys Design Compiler [23] with the TSMC Standard 65 nm
Cell Library [24]. The same 65 nm technology is also adopted for
our memory model. The critical path delay (2.2 ns obtained from
synthesis) is used to determine the clock cycle time. The time and
energy consumption per memory access is obtained by CACTI [25]
for different memory sizes. Multi-threaded executions are simulated
with the Modelsim simulator [26], from which CPI, cache misses and
thread switchings are obtained.

Table 2 shows the kernel benchmarks used in our experiment.
Those kernel benchmarks can be found in many applications in the
areas of graphic processing, signal processing and cryptography.
The first column of the table lists the benchmark names. Their
abbreviations and code sizes in kilobytes are given respectively in
the second and third columns. The last column shows the cache size
selected for each of the benchmarks. The choice of the cache size is
dependent on the size of the available frequent loops and we select the
minimal cache size required to fully hold the sync loops. For the given
set of benchmarks, the sizes of the small caches used are 128-bytes,
256-bytes and 512-bytes.

The latency and dynamic energy consumption per memory access
estimated by CACTI are shown in Table III. For the access latency (in
nanoseconds, ns), the equivalent number of CPU clock cycles (cc) is
also given in Column 3 of the table.

We incorporate the memory access delay cycles into the processor
hardware model simulation in ModelSim. For each benchmark, we
simulate the application execution using three execution methods:

1.	 Single threaded execution (ST),

2.	 Baseline multi-threaded execution (MT), and

3.	 Multi-threaded execution with sync loop (MT-Sync).

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 8 of 15

In the ST execution, the threads execute in the pipeline sequentially
(ie. thread n starts to execute only after thread n-1 finishes its
execution). Since there is no interleaving of threads, every time a
cache miss occurs the pipeline will go idle until the memory access
finishes. MT is implemented on a baseline multi-threaded processor
with the round-robin thread selection policy and MT-Sync is
implemented on the same multi-threaded processor with hardware
extensions for synchronized thread execution on frequent loops. For
a given application, the working set of all three execution methods is
the same.

Two typical cache configurations: direct mapped (1-way) and
2-way set associative cache are implemented in each of the three
designs. Since the cache size is small, higher associative caches may
give diminishing returns on energy savings. Therefore they are not
considered here.

Memory cache significantly impacts the power consumption
of the processor. Increase in power consumption depends on the
configuration of the cache as well as the multi-threaded processor
design. Table 4 shows the total power (in milliwatts, mW) of MT and
MT-Sync processor designs with and without a cache and percentage
increase in power consumption caused by the addition of caches. Here
we consider six cache configurations used by the benchmarks of this
experiment. The total power is the aggregate of total dynamic power
and cell leakage power.

As can be seen in the table, for all cache configurations, the increase
in power consumption caused by the addition of the cache is significant
ranging from 18.77% to 25.87% for the 128-byte caches, 34.45% to
48.18% for the 256-byte caches and 65.54% to a whopping 83.82% for
the 512-byte caches. This shows the rapidly increasing impact of cache
size on the power consumption of the system. This motivates the need
for the use of small caches for low power processors.

Figure 5: Experimental Setup.

Benchmark Abrv. Code Size
(KB)

Cache Size
(Byte)

Discrete Cosine Transform DCT 1.09 128

Matrix Multiplication MM 0.39 128

Matrix Inversion MI 2.77 128

LU Matrix Factorization LU 1.16 128

Cholesky Matrix
Decomposition

CHL 1.48 128

Gaussian Elimination GE 1.29 128

Radix Sorting RS 2.77 128

Fast Fourier Transform FFT 1.80 256

System of Linear Equations LE 1.86 256

AES Encryption AES 7.48 512
Table 2: Benchmarks

Memory Size
(MB)

Access Latency Energy
(nJ)(ns) (cc)

50 9.19 5 0.89

100 11.98 6 1.10

150 14.30 7 1.50

200 17.59 8 1.54

250 19.75 9 1.81

300 21.94 10 2.13

350 24.82 12 1.61

400 27.01 13 1.76

450 29.23 14 1.92

500 31.42 15 2.08
Table 3: Latency and dynamic energy consumption per memory acess

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

Similarly, implementation of the MT-Sync design introduces extra
costs to the system in terms of power consumption and area. The
last row of Table 4 shows the percentage increase in total power of
MT-Sync implementation compared to that of MT. These additional
power consumption costs lie in the range of 4.41% to 10.47% for the
considered cache configurations. However, the savings due to the
cache miss reduction from MT-Sync design outweigh these overheads,
leading to an overall improvement on design energy efficiency.

 Table 5 shows the on-chip area of MT and MT-Sync processor
implementations. The last row of the table shows percentage increase
in area caused by the synchronization hardware. It can be observed
that percentage area increase ranges from 3.85% to 4.25% depending
on the cache con-figuration.

As can be seen from Table 3, the memory access latency and energy
consumption per access (hence the performance and the energy
consumption of the overall system) vary with the memory size. In
the next two subsections we analyse the effectiveness of MT-Sync
execution in terms of performance and energy consumption under
two instruction memory size settings; fixed memory size and varied
memory size.

Experiments on designs with fixed memory size

We first test the designs with a fixed off-chip instruction memory
size. For this experiment we select a moderate memory size of 300MB
from the list given in Table 3. For this size, each memory access takes
10 clock cycles. The CPI, cache misses, thread switchings, and energy
consumption data obtained from simulations with a direct mapped
cache for each benchmark under three different designs, ST, MT, and
MT-Sync, are shown in Figures 6(a), 6(b), 6(c), and 6(d), respectively.
The average values of each of the measures over all benchmarks are
also presented in the last bar group (labelled as AVG) in each figure.
For a neat presentation, in Figure 6, cache miss, thread switching, and

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 9 of 15

energy consumption are normalized to the ST design, but the actual
data (namely, the number of cache misses, the number of thread
switchings, and the energy consumption in μJ) for average values are
also given inside the brackets in the figure.

The energy consumption is the sum of energy consumed by the
processor and the memory, as given in the formula below.

 (2)

where E stands for the energy consumption; P is the total power
consumed by all components, except the memory, in the processor
system (Figures 4), T is the application execution time; e is the energy
consumption per memory access, and m the cache misses. For every
application, ST, MT and MT-Sync executions process the same data
set. Based on the same data set, we are able to compare the three
designs in terms of CPI, cache misses, switching counts, and energy
consumptions, as given in Figure 6.

From Figure 6(a), we can see that the MT design under-performs,
with an average CPI of 2.26, higher than the values of 2.09 and 1.41
from the ST and MT-Sync designs. This is due to the extra cache misses
incurred by the thread execution, which is verified by the data shown
Figure 6(b). In most cases, MT has a higher cache misses than other
two designs and on average it is 35% higher than the ST execution. On
the contrary, the MT-Sync design reduces the cache misses by 27% as
compared to the ST design. It can also be observed from Figure 6(c),
the MT-Sync design incurs less thread switchings than the MT design
where about 46% average saving can be achieved.

The improved performance and reduced cache misses help reducing
the energy consumption. As can be seen from Fig-ure 6(d), the MT-
Sync design consumes less energy than MT and ST designs; for MT, in
most cases extra energy consumption has been incurred. The average
energy consumption of MT-Sync is 32 µJ, considerably lower than

CPU with Cache (Six Configurations)

CPU
Only

128 Bytes 256 Bytes 512 Bytes

1-way 2-way 1-way 2-way 1-way 2-way

MT Design

Total Power (mW) 5.21 6.18 6.30 7.00 7.07 8.62 8.64

Increase from CPU Only(%) - 18.77 21.03 34.45 35.79 65.54 65.86

MT-Sync Design

Total Power (mW) 5.24 6.56 6.59 7.70 7.76 9.58 9.63

Increase from CPU Only(%) - 25.19 25.87 47.10 48.18 83.00 83.82

Increase from MT(%) 0.59 5.69 4.41 9.13 8.90 9.89 10.47

Cache Configuration

128 Byte Cache 256 Byte Cache 512 Byte Cache

1-way 2-way 1-way 2-way 1-way 2-way

Area of MT (µm2) 200349 201704 213250 215049 238684 241378

Area of MT-Sync (µm2) 208863 210187 222134 223709 248539 250680

Area Increase (%) 4.25 4.21 4.17 4.03 4.13 3.85
Table 5: Comparison of area cost of MT and MT-sync processor designs.

Table 4: Comparison of total power consuption of MT and MT-sync processor designs and impact of cache on power consuption

E P T e m= ∗ + ∗

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

those from ST (54 54 µJ) and MT (80 µJ) However, with application
FFT, although there is a 13% improvement in performance, the
high number of cache misses lead to more energy consumed. The
increased number of cache misses is caused by the existence of ping-
pong effect due to ineffective thread interleaving at a number of points
outside of the frequent loop execution. this issue is mitigated by
using 2-way set associative cache as manifested by the results shown
in Figure 7 for the designs when 2-way associative cache is used.

Compared to the 1-way cache, the 2-way cache improves the
performance (CPI, caches misses, thread switchings) of both MT and
MT-Sync designs except in the case of AES. On average, MT-Sync
offers the highest overall performance and lowest energy consumption
among the three designs.

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 10 of 15

Experiments on designs with varied memory size

The size of the off-chip instruction memory can have a significant
effect on performance and energy efficiency. As the memory access
penalty varies with the memory size, the thread interleaving patterns,
hence the execution time and number of misses vary. Moreover, large
memories consume more power pushing up the energy consumption.
The size of the off-chip memory depends on the applications run on
the system and the overall system architecture. In these experiments
we focus on single building block embedded processors that go
in large multiprocessor systems. At this point, our mechanism is
oblivious to the architecture of this multiprocessor system; hence it is
infeasible to specify an exact memory size. Therefore, for fairness, we
investigate the effectiveness of our synchronization design for a range
of possible memory sizes.

Figure 6: Results of Designs with 300MB Memory and 1-Way Cache: (a) CPI (b) Cache Misses (c) Thread Switching Count (d)
Energy Consumption

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

In order to do this, we repeat the same set of experiments for designs
under ten different memory sizes, ranging from 50MB to 500MB as
shown in Table 3. In these experiments, a large set of data for CPIs,
cache misses, and thread switchings are collected.

To introduce the metrics used to analyse the variations in
performance and energy consumption, we use one benchmark as
an example. Table 6 lists the CPI readings for the bench-mark, LE.
For ease of observation, the data in the table are also presented in
Figure 8. As can be seen in the figure, generally, the CPI shows an
increasing pattern with the memory size (due to increased memory
access time) for all designs. Occasional CPI drops can be attributed to
the drops in cache misses due to the changes in the thread interleave
execution pattern. To save the space and facilitate the design
comparison, we apply the linear regression on the experiment data
for each benchmark on a given design. For example, the dashed line

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 11 of 15

in Figure 8 is the regressed CPI linear line (linear trend line) of
the MT-1way design for LE . We use the slope of the linear line to
evaluate the effectiveness of a design to mitigate the impact of
long memory access penalty on the overall performance, and we
use the average value to consolidate the collected data from the
experiment. We also calculate the regression error of the actual
CPIs from the linear trend line. The lower the regression error,
the more linear the actual CPI increase, hence more predictable.

These three values: regression error (Reg. Error), linear slope, and
the average, for LE application are shown in the last three rows of
Table 6.

These three values: regression error (Reg. Error), linear slope, and
the average, for LE application are shown in the last three rows of
Table 6.

Figure 7. Results of Designs with 300MB Memory and 2-Way Cache. (a) CPI (b) Cache Misses (c) Thread Switching Count (d)
Energy Consumption.

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

By analysing the results shown in Table 6 and Figure 8, following
conclusions can be made:

1.	 Average CPI values show that the MT-Sync execution produces
higher performance than both ST and MT executions.

2.	 The slopes of the linear trend lines show that for every cache
configuration, when memory size increased, the increase of the
CPI from the MT-Sync execution is slower than those from ST
and MT.

3.	 The error of linear regression of the MT-Sync execution is
less than that of MT execution for both cache config-urations
which goes on to suggest that performance of MT-Sync is more
predictable than that of MT.

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 12 of 15

Similarly, we calculate regression error, linear slope, and the average
values for all benchmarks under ST, MT and MT-Sync designs
implemented with direct mapped (1-way) and 2-way set associative
caches. Table 7 shows the complete set of the calculated values. In
this table, Cache Assoc. is the number of ways in a set, App. stands for
the application name, Avg. the average CPI, and Reg. Error the linear
regression error.

The results of the designs with 1-way cache are given in the top
half of the table and the results of the designs with 2-way cache are
given in the bottom half of the table. The average values over all
benchmarks are given in the last row (as highlighted) in each half. As
can be seen from this table, with the 1-way design, MT-Sync offers
higher performance than other two designs over the varied memory
sizes, with an average CPI of 1.39, lower than those from ST (2.09)

IM Size ST MT MT-sync

(MB) 1-way 2-way 1-way 2-way 1-way 2-way

50 2.19 2.57 2.19 1.40 1.33 1.21

100 2.52 2.85 1.98 1.38 1.43 1.24

150 2.63 3.14 2.20 1.55 1.44 1.28

200 2.85 3.43 2.60 1.75 1.77 1.41

250 3.07 3.71 2.47 1.68 1.64 1.44

300 3.29 4.00 3.21 1.84 1.86 1.58

350 3.62 4.43 3.76 2.07 1.92 1.60

400 3.84 4.72 4.03 2.35 2.36 1.92

450 4.06 5.00 3.92 2.43 2.09 1.77

500 4.28 5.29 4.83 2.48 2.22 1.86

Reg. Error 0.0356 0.0031 0.0222 0.0071 0.0087 0.0048

Slope 0.0046 0.0062 0.0062 0.0027 0.0022 0.0016

Average 3.24 3.91 3.12 1.89 1.81 1.53
Table 6: CPIs of banchmark LE under 128 byte instruction cache

Figure 8: Linearly Increasing CPI Trend with Instruction Memory Size of LE Benchmark (128 Byte Instruction
Cache).

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

and MT (2.31) When the cache associativity is increased to 2-way,
the CPI of ST is increased; this is due to increased cache misses and
for each miss, the related pipeline stall time cannot be utilized in
the single thread execution. But since the stall time can be exploited
in the multi-threaded execution, the CPIs of MT and MT-Sync are
reduced. Moreover, based on the regressed CPI linear line, MT-Sync
has the smallest slop, which means it can effectively mitigate the long
memory access penalty for large memories, and this trend is also
more predictable than that of the MT execution because of the smaller
regression error.

Table 8 shows average (over 50MB-500MB different memory sizes)
cache misses, energy consumption (in micro-joule), and the switching
count for the multi-threaded execu-tion. As can be seen from the table,
MT sometimes incurs extra cache misses as compared to the single
threaded execution, but with thread synchronization (MT-Sync), the
cache misses are reduced. Overall, MT-Sync consumes less energy (an
average of 29.41µJ) than the ST (60.07µJ) and MT (69.28µJ) designs.
It can be also observed that both MT and MT-Sync benefit from the
2-way cache, with the reduced cache misses, thread switching count,
and energy consumption.

Conclusion

Cache and multi-threading are two typical design techniques
for performance improvement. But when they are implemented in
a processor, they can adversely interfere with each other, leading
to reduced performance and increased cache misses and power
consumption.

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 13 of 15

In this work we investigated multi threaded processors with an
instruction cache for applications that have embarrassing parallelism
(the same code can be executed by a number of in-dependent threads
on different data sets). Such multi-threaded processors can be used as
building blocks in constructing a large multiprocessor system.

We targeted the frequent instruction loops (sync loop) for high
temporal locality. Threads are synchronized on the sync loop. During
the sync loop execution, the sync threads can be interleaved with non-
sync threads, and the cache locking is used to prevent the non-sync
threads from evicting the cached sync loop instructions.

We presented a micro-architectural level thread synchroniza-
tion design to synchronize threads and interact with cache locking
for sync loop execution. The thread synchronization design uses a
prefetch based cache locking mechanism (PTCL) so that high cache
locality can be achieved even with small caches. To reduce the thread
switching overhead, we applied a parallel and tuck-in (PTL) approach
for thread switching control with which zero-switching delay can be
achieved with the explored processor.

To verify the effectiveness of our design, we run experiments on a set
of kernel applications. The experiment results on a set of benchmarks
show that the thread synchronization indeed helps reducing cache
misses, avoiding unnecessary thread switchings and improving
overall performance and energy efficiency. For the designs with 1-way
cache and 300MB memory, an average of 26% baseline energy can be
saved as compared to the 37% energy overhead caused by the baseline

Cache
Assoc.

Cache
Size (B)

App. ST MT MT-Sync

Avg. Slope
X 103

Reg.
Error

Avg. Slope
X 103

Reg.
Error

Avg. Slope
X 103

Reg.
Error

1-way 128 DCT 2.45 3.1 0.0153 2.57 2.4 0.4126 1.20 0.3 0.0648

MM 1.78 1.6 0.0082 2.28 5.8 0.5322 1.13 0.3 0.0106

MI 1.33 0.7 0.0035 2.26 7.0 0.0070 1.02 0.1 0.0001

LU 2.64 3.5 0.0172 2.70 4.1 0.4588 1.94 0.9 0.1689

CHL 1.17 0.4 0.0018 3.65 12.4 0.8176 1.06 0.1 0.0149

GE 1.72 1.5 0.0076 2.90 6.1 0.2577 2.14 3.8 0.2805

RS 3.53 5.5 0.0435 1.81 1.1 0.1664 1.51 0.8 0.1600

256 FFT 1.56 1.2 0.0060 1.98 3.4 0.0557 1.33 0.9 0.0373

LE 2.78 3.8 0.0188 1.53 1.1 0.0683 1.40 1.0 0.0641

512 AES 1.99 2.1 0.0104 1.36 0.5 0.0852 1.16 0.4 0.0228

AVG 2.09 2.3 0.0132 2.31 4.4 0.2862 1.39 0.9 0.0824

2-way 128 DCT 2.45 5.2 0.0258 2.57 2.6 0.2179 1.20 0.5 0.0465

MM 3.08 4.4 0.0219 1.45 1.5 0.0351 1.13 0.3 0.0102

MI 1.33 0.7 0.0035 1.23 0.6 0.0006 1.03 0.1 0.0001

LU 3.38 5.0 0.0248 1.90 1.0 0.2446 1.51 0.3 0.0706

CHL 3.31 4.9 0.0243 1.20 0.4 0.0322 1.07 0.1 0.0108

GE 3.67 5.7 0.0283 1.97 2.4 0.0605 1.56 1.2 0.0549

RS 3.50 5.3 0.0264 1.82 1.5 0.0578 1.48 1.0 0.0957

256 FFT 3.00 4.2 0.0211 1.62 2.3 0.0642 1.28 0.9 0.0432

LE 2.99 4.2 0.0210 1.37 1.3 0.0421 1.32 1.1 0.0414

512 AES 2.45 3.1 0.0153 1.09 0.4 0.0253 1.12 0.4 0.0273

AVG 2.97 4.4 0.0219 1.68 1.5 0.0839 1.29 0.6 0.0415
Table 7: CPI regression data over varied memory size

https://doi.org/10.15344/2456-4451/2018/131

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

MT design, and the energy savings become more significant when the
memory size is increased.

It is also demonstrated that the synchronization helps to mitigate
the impact of long memory access delay on the overall performance,
making the MT-Sync design more scalable than the traditional multi-
threaded design.

Competing Interests

The authors declare that no competing interests exist.

References

1.	 Harizopoulos S, Ailamaki A (2006) Improving instruction cache performance
in OLTP. ACM Transactions on Database Systems, 31: 887-920.

2.	 Joseph PM, Rajan J, Kuriakose KK, Murty SAVS (2013) Exploiting SIMD
instructions in modern microprocessors to optimize the performance of
stream ciphers. International Journal of Computer Network and Information
Security, 5: 56-66.

3.	 Zhang K, Wang YH, Chen SM, Li ZT, Wen L, et al. (2013) Customized
MMRF: Efficient matrix operations on SIMD processors. Applied Mechanics
and Materials 347-350: 1727-1731.

4.	 Huang L, Xiao N, Wang Z, Wang Y, Lai M, et al. (2013) Efficient multimedia
coprocessor with enhanced SIMD engines for exploiting ILP and DLP.
Parallel Computing, 39: 586-602.

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 14 of 15

5.	 Welch E, Patru D, Saber E, Bengtson K (2012) A study of the use of SIMD
instructions for two image processing algorithms. In Proceedings of the
Western New York Image Processing Workshop (WNYIPW).

6.	 Wickramasinghe M, Guo H (2014) Energy-aware thread scheduling for
embedded multi-threaded processors: Architectural level design and
implementation. In Proceedings of the IEEE Computer Society Annual
Symposium on VLSI (ISVLSI).

7.	 Cleary J, Callanan O, Purcell M, Gregg D (2013) Fast asymmetric thread
synchronization. ACM Transactions on Architecture and Code Optimization
27: 1-27.

8.	 Wang X, Zhao Y, Wei Y, Song S, Han B (2010) Prophet synchronization
thread model and compiler support. In Processing, the International
Symposium on Parallel and Distributed Processing with Applications
(ISPA).

9.	 Anderson JH, Ahmed T, Kalman SS (2015) Thread synchronization by
transitioning threads to spin lock and sleep state. April 7 2015. US Patent
9,003,413..

10.	 Atta I, Tozun P, Tong X, Ailamaki A, Moshovos A, et al. (2013) STREX:
Boosting instruction cache reuse in OLTP workloads through stratified
transaction execution. In Proceedings of International Symposium on
Computer Architecture.

11.	 Nickolls JR, Lew SD, Coon BW, Mills PC (2010) Synchronization of threads
in a cooperative thread array. August 31 2010. US Patent 7,788,468..

12.	 Foo YC (2012) Synchronization of Execution Threads on a Multi-threaded
processor, US Patent 8286180B2.

13.	 Zhang W, Liu F, Fan R (2014) Cache matching: Thread scheduling to
maximize data reuse. In Proceedings of the High Performance Computing
Symposium, Tampa, Florida.

Cache
Size (B)

App. ST MT MT-Sync

Cache
Misses

Energy
(µJ)

Cache
Misses

Switch. Energy
(µJ)

Cache
Misses

Switch. Energy
(µJ)

DCT 103608 232.61 200489 320474 448.03 75033 93165 170.19

MM 2652 5.85 4123 5815 9.21 737 1144 1.80

MI 1548 3.38 1174 1847 2.73 94 117 0.31

LU 5580 12.40 8787 12655 19.60 5632 8501 12.67

CHL 35144 76.17 69402 105545 154.69 2718 3703 7.91

GE 3768 8.25 6730 8189 14.98 4105 6081 9.25

128 RS 17052 38.00 16343 21606 36.26 13208 16224 29.41

256 FFT 3040 6.91 5312 8358 12.25 3189 4445 7.46

LE 5236 11.67 5064 6363 11.27 4134 5130 9.27

512 AES 63152 139.75 41853 54926 95.18 25610 31730 60.01

AVG 24078 53.50 35927 54578 80.42 13446 17024 30.83

DCT 164812 367.83 185071 294121 414.02 76848 91873 173.93

MM 3688 8.20 2611 3237 5.84 744 1150 1.81

MI 1520 3.32 289 442 0.74 103 129 0.33

128 LU 7816 17.30 5860 8534 13.10 4528 6183 10.17

CHL 52232 114.97 8258 12439 19.86 2669 3580 7.83

GE 5464 12.13 4137 5911 9.25 2969 4023 6.69

RS 19324 42.82 17594 23115 38.93 15797 18406 34.90

256 FFT 8256 18.43 5415 6813 12.30 3368 4375 7.81

LE 6692 14.81 4126 4955 9.22 3782 4539 8.49

512 AES 80652 178.26 22700 25189 53.19 26084 30246 60.80

AVG 29978 66.65 25929 39952 58.14 12312 14917 28.00
Table 8: Average cache misses , thread switching and eneargy consumption over varied memory size

https://dl.acm.org/citation.cfm%3Fid%3D1166079
https://dl.acm.org/citation.cfm%3Fid%3D1166079
http://www.mecs-press.org/ijcnis/ijcnis-v5-n6/IJCNIS-V5-N6-8.pdf
http://www.mecs-press.org/ijcnis/ijcnis-v5-n6/IJCNIS-V5-N6-8.pdf
http://www.mecs-press.org/ijcnis/ijcnis-v5-n6/IJCNIS-V5-N6-8.pdf
http://www.mecs-press.org/ijcnis/ijcnis-v5-n6/IJCNIS-V5-N6-8.pdf
https://www.atlantis-press.com/proceedings/isccca-13/5934
https://www.atlantis-press.com/proceedings/isccca-13/5934
https://www.atlantis-press.com/proceedings/isccca-13/5934
https://www.sciencedirect.com/science/article/pii/S0167819113000823
https://www.sciencedirect.com/science/article/pii/S0167819113000823
https://www.sciencedirect.com/science/article/pii/S0167819113000823
https://doi.org/10.15344/2456-4451/2018/131
http://ieeexplore.ieee.org/document/6466650/
http://ieeexplore.ieee.org/document/6466650/
http://ieeexplore.ieee.org/document/6466650/
http://ieeexplore.ieee.org/document/6903356/
http://ieeexplore.ieee.org/document/6903356/
http://ieeexplore.ieee.org/document/6903356/
http://ieeexplore.ieee.org/document/6903356/
https://dl.acm.org/citation.cfm%3Fid%3D2400686
https://dl.acm.org/citation.cfm%3Fid%3D2400686
https://dl.acm.org/citation.cfm%3Fid%3D2400686
http://ieeexplore.ieee.org/document/5634416/
http://ieeexplore.ieee.org/document/5634416/
http://ieeexplore.ieee.org/document/5634416/
http://ieeexplore.ieee.org/document/5634416/
E:\IJCSE\IJCSE-135\IJCSE_Authoor_Proof\Thread%20synchronization%20by%20transitioning%20threads%20to%20spin%20lock%20and%20sleep%20state
E:\IJCSE\IJCSE-135\IJCSE_Authoor_Proof\Thread%20synchronization%20by%20transitioning%20threads%20to%20spin%20lock%20and%20sleep%20state
E:\IJCSE\IJCSE-135\IJCSE_Authoor_Proof\Thread%20synchronization%20by%20transitioning%20threads%20to%20spin%20lock%20and%20sleep%20state
https://infoscience.epfl.ch/record/185790/files/2013_isca_strex.pdf
https://infoscience.epfl.ch/record/185790/files/2013_isca_strex.pdf
https://infoscience.epfl.ch/record/185790/files/2013_isca_strex.pdf
https://infoscience.epfl.ch/record/185790/files/2013_isca_strex.pdf

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 3. 2018. 131

14.	 Huang YH, Tseng YY, Kuo YK, Yen TK, Lai BCC, et al. (2013) A locality-
aware dynamic thread scheduler for GPGPUs. In Proceedings of
the International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT), pages, Taipei, Taiwan.

15.	 Rogers TG, O’Connor M, Aamodt TM (2013) Cache-conscious thread
scheduling for massively multithreaded processors. IEEE Micro, 33: 78-85.

16.	 Rogers TG, O’Connor M, Aamodt TM (2012) Cache-conscious wavefront
scheduling. In Proceedings of the 45th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-45. IEEE Computer Society.

17.	 Liang Y, Mitra T (2010) Instruction cache locking using temporal reuse
profile. In Proceedings of the 47th Design Automation Conference, DAC,
New York, NY, USA, ACM 10: 344-349.

18.	 Liu T, Li M, Xue CJ (2012) Instruction cache locking for embedded systems
using probability profile. Journal of Signal Processing Systems 69: 173-
188.

19.	 Qiu K, Zhao M, Xue CJ, Orailoglu A (2014) Branch prediction-directed
dynamic instruction cache locking for embedded systems. Transactions on
Embedded Computer Systems 13: 1-156.

20.	 Anand K, Barua R (2015) Instruction-cache locking for improving embedded
systems performance. ACM Transactions on Embedded Computer
Systems 14: 1-53.

21.	 Buck B, Hollingsworth JK (2000) An API for runtime code patching.
International Journal of High Performance Computing Applications 14: 317-
329.

22.	 Burger D, Austin TM (1997)The simplescalar tool set, version 2.0. ACM
25: 13-25.

23.	 Synopsys Design Compiler. http://www.synopsys.com.

24.	 TSMC 65nm GP Standard Cell Libraries - tcbn65gplus. https://www.cmc.
ca/en/WhatWeOffer/Products/CMC-00200-01411.aspx.

25.	 Thoziyoor S, Ahn JH, Monchiero M, Brockman JB, Jouppi NP (2008) A
comprehensive memory modeling tool and its application to the design
and analysis of future memory hierarchies. In Proceedings of the 35th
International Symposium on Computer Architecture.

26.	 Modelsim Simulator. http://www.mentor.com/products/fv/modelsim.

Citation: Wickramasinghe M, Guo H (2018) A Low-Energy Multi-Threaded Processor Design for Application Specific Embedded Systems. Int J Comput Softw
Eng 3: 131. doi: https://doi.org/10.15344/2456-4451/2018/131

 Page 15 of 15

http://ieeexplore.ieee.org/document/6904263/
http://ieeexplore.ieee.org/document/6904263/
http://ieeexplore.ieee.org/document/6904263/
http://ieeexplore.ieee.org/document/6904263/
http://ieeexplore.ieee.org/document/6487475/
http://ieeexplore.ieee.org/document/6487475/
https://www.ece.ubc.ca/~aamodt/papers/tgrogers.micro2012.pdf
https://www.ece.ubc.ca/~aamodt/papers/tgrogers.micro2012.pdf
https://www.ece.ubc.ca/~aamodt/papers/tgrogers.micro2012.pdf
http://ieeexplore.ieee.org/document/5522664/
http://ieeexplore.ieee.org/document/5522664/
http://ieeexplore.ieee.org/document/5522664/
https://link.springer.com/article/10.1007/s11265-011-0650-6
https://link.springer.com/article/10.1007/s11265-011-0650-6
https://link.springer.com/article/10.1007/s11265-011-0650-6
https://dl.acm.org/citation.cfm%3Fid%3D2660492
https://dl.acm.org/citation.cfm%3Fid%3D2660492
https://dl.acm.org/citation.cfm%3Fid%3D2660492
https://dl.acm.org/citation.cfm%3Fid%3D2700100
https://dl.acm.org/citation.cfm%3Fid%3D2700100
https://dl.acm.org/citation.cfm%3Fid%3D2700100
https://pdfs.semanticscholar.org/1785/99e5e976e82528e71cb2e1b812d588fa0e44.pdf
https://pdfs.semanticscholar.org/1785/99e5e976e82528e71cb2e1b812d588fa0e44.pdf
https://pdfs.semanticscholar.org/1785/99e5e976e82528e71cb2e1b812d588fa0e44.pdf
http://www.simplescalar.com/docs/users_guide_v2.pdf
http://www.simplescalar.com/docs/users_guide_v2.pdf
http://www.synopsys.com/
https://www.cmc.ca/en/WhatWeOffer/Products/CMC-00200-01411.aspx
https://www.cmc.ca/en/WhatWeOffer/Products/CMC-00200-01411.aspx
http://ieeexplore.ieee.org/document/4556715/
http://ieeexplore.ieee.org/document/4556715/
http://ieeexplore.ieee.org/document/4556715/
http://ieeexplore.ieee.org/document/4556715/
http://www.mentor.com/products/fv/modelsim
https://doi.org/10.15344/2456-4451/2018/131

