
Implementation of View Creation and Deletion with Class Integration
under Multiple Data Sources

Publication History:

Received: September 25, 2017
Accepted: December 14, 2017
Published: December 16, 2017

Keywords:

Class integration, Meta-object,
Multiple data sources, Object-
oriented data warehouse, View
creation.

Review Article Open Access

Introduction

Data warehousing is very popular in these years because it can
provide a relevant integrated data source to a variety of users [1,4]. The
data in the integrated data source come from one or several underlying
databases and are well organized for user queries. A data collector is
responsible for collecting the necessary information and then passes
it to the data warehouse. In a data warehouse, view creation is very
important to meeting the requirements of group users. Two kinds
of views are commonly used. One is called materialized view, which
copies data from underlying databases to a data warehouse according
to given view definitions; the other one is called virtual view, which
generates data from other materialized views.

Object-oriented representation could easily depict complex
relations among objects. It can also show interwoven composition of
attributes within objects. Besides, it has the advantage of inheritance,
encapsulation, and polymorphism. Thus, the object-oriented concept
has been embedded into different techniques, including databases
and data warehouses. For example, Chen et al. introduced a data
warehouse model suitable in object-oriented environments with a
single data source [2,3]. That proposed model maintained the original
structures in the source database to store the materialized views in the
object-oriented data warehouse. Zhuge and Garica-Molina designed
algorithms for view maintenance in a data warehouse of graph
structure [12].

Many useful view maintenance techniques for object-oriented
databases were proposed as well [7-9]. Trujillo et al. implemented
the object-oriented modeling of data warehouses by the Unified
Modelling Language [11]. Suri and Sharma embedded the object–
oriented technology to some existing applications [10]. Pahwa and
Chhabre introduced an approach to transfer a relational schema from
into an object-oriented data warehouse [6].

In this paper, we extend the uncompressed data model to manage
views derived from multiple-source environments. Meta-objects are
presented and a class-integration procedure is designed to help the
execution of view creation and deletion in an object-oriented data
warehousing with multiple data sources.

*Corresponding Author: Prof. Tzung-Pei Hong, Department of Computer
Science and Information Engineering, National University of Kaohsiung,
Kaohsiung, Taiwan; E-mail: tphong@nuk.edu.tw

Citation: Hong TP, Chen WC, Lin WY, Wang SL (2017) Implementation of View
Creation and Deletion with Class Integration under Multiple Data Sources. Int
J Comput Softw Eng 2: 123. doi: https://doi.org/10.15344/2456-4451/2017/123

Copyright: © 2017 Hong et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Preliminary

Class is a basic group concept in object-oriented representation.
A class may include some attributes and methods. The value in an
attribute may be atomic or come from another class which has been
defined. An instance can be declared based on a class and will own
the attributes and methods in the class. If a class is a descendent of
another class, then the former can inherit the attributes and methods
from the latter.

After classes and instances are generated, views can then be defined
to act as virtual classes for increasing the modeling and schema
restructuring capability [5]. A view is usually defined by a query
sentence. Objects satisfying the condition of a view are sent from the
underlying databases to the data warehouse. The number of attributes
in the view is equal to that given in the query sentence. A view in a
data warehouse can be defined to retrieve the objects from more than
one data source, with the relationships between these data sources
being determined by the conditions in the query sentence. Two kinds
of condition sentences may be used here. One is the independent
condition sentence, in which variables can be retrieved in a single
source database. The other is the dependent condition sentence,
in which variables must be retrieved from more than one source
database. Restated, when a condition sentence can be checked from
a single source database, it is an independent condition sentence;
otherwise, it is a dependent condition sentence. An object-oriented
data warehouse can then be specified by the given classes, instances
and view definitions.

Meta-Object and Class Integration

A meta-object is used in this paper to keep the class identifiers and

International Journal of
Computer & Software Engineering

Tzung-Pei Hong1,2*, Wei-Chou Chen3, Wen-Yang Lin1 and Shyue-Liang Wang4

1Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung, Taiwan
2Department of Computer Science and Engineering, National Sun Yat-sen University, Taiwan
3Coretech Knowledge Inc., Taiwan
4Department of Information Management, National University of Kaohsiung, Taiwan

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 123

 Hong, et al., Int J Comput Softw Eng 2017, 2: 123
 https://doi.org/10.15344/2456-4451/2017/123

Abstract

Data warehousing has recently been applied in different applications because it can provide relevant
integrated data views according to the requirement of users. Along with the popularity of object-oriented
concepts, a data warehouse can be implemented effectively and efficiently with objects for representing
relationships among complex data. In this paper, we consider the implementation issues of view creation
and deletion in an object-oriented data warehouse with multiple underlying data sources. The same
class names may exist in different data sources, but the contents in these classes may be different. Meta-
objects and a class-integration procedure are thus designed to help the execution of view creation and
deletion. The implementation algorithms for view creation and deletion under multiple data sources are
also presented.

https://doi.org/10.15344/2456-4451/2017/123
https://doi.org/10.15344/2456-4451/2017/123

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 123

instance identifiers used for a view definition of a data warehouse
for increasing the processing efficiency of view management. It can
be defined by a triple {Meta-mv, mc, mi}, where mv is the identifier
of a view, mc is the set of classes used in mv, and mi is the set of
instances kept in the data warehouse for mv. With the meta-object,
an object-oriented data warehouse W can thus be formally defined
as a quadruple {C, V, I, M}, where C is a set of classes, V is a set of
view definitions, I is a set of instances generated according to C
and V, and M is a set of meta-objects generated according to V.

Since the paper handles a data warehouse formed from multiple
databases, the classes and instances may come from different
databases. Given a class name from an underlying database in a data
warehouse, the class name may also exist in some other underlying
databases or may have been used in other views. A procedure called
the Class-Integration Procedure is then designed to handle the
integration of the classes with the same names in the multiple data
sources. It uses the meta-objects to speed up the integration process.
The procedure is stated as follows.

The Class-Integration Procedure

Input: A data warehouse W(C, V, I, M) and a class b.c, where b is a
source databaseand c is a class in the database b.
Output: A revised data warehouse W’(C', V, I’, M) which integrates
the class b.c withthe other classes in W.

Step 1. Search the meta-objects M for the class b.c. If b.c can be found
in M (meaning it is used by some views in V), set W' = W and exit the
procedure; otherwise, do Step 2.
Step 2. Send the request to the data collector to retrieve the class
definition of b.c.
Step 3. Receive the class definition of b.c from the data collector. If the
class name c (without b) exists in C of the data warehouse W (meaning
the classes of the same name c in other source databases are used by
some views in V), do the next step, otherwise, create the class c in C of
the data warehouse W and exit the procedure.
Step 4. Check whether the set of attributes of the class b.c. is a subset
of the class c in C, If it is, exit the procedure, otherwise, do the next
step.
Step 5. Modify the class c in C to include the attributes in b.c. That is,
New attributes of c in C = (old attributes of c in C) (attributes of b.c)
New methods of c in C = (old methods of c in C) (methods of b.c).
Step 6. Modify all instances in I inheriting from the class c according
to the new

After Step 6, the structure of the class c in the underlying database b
has been integrated with the class c in C of the data warehouse W. The
class c can thus be correctly used in the warehouse W.

The Algorithm of View Creation under Multiple Data
Sources

Based on the discussion above, a view-creation algorithm under
multiple data sources is designed here. The select-from-where syntax
for a new warehouse view (WV) is stated as follows:

Create Warehouse View WV(wva1, wva2, …, wvan) as
Select
From
Where w1, w2, …, wm

Citation: Hong TP, Chen WC, Lin WY, Wang SL (2017) Implementation of View Creation and Deletion with Class Integration under Multiple Data Sources. Int
J Comput Softw Eng 2: 123. doi: https://doi.org/10.15344/2456-4451/2017/123

 Page 2 of 8

Here, wvai represents the i-th attribute in the view W, represents
the i-th attribute which comes from a class in the source database
(if the attributes and the classes of the attributes exist in all the source
databases of the view, the parameter can be omitted), denotes
the i-th class from the source database and wi denotes the i-th
condition. The implementation algorithm for processing the above
statement is proposed as follows.

The view-creation algorithm

Input: A data warehouse W(C, V, I, M) with a view-creation statement
for creating a new view WV.
Output: A revised data warehouse W’(C', V’, I’, M’) after WV is
created.

Step 1: For every class in WV, do the class-integration procedure,
which is used to integrate the class in the class set C.
Step 2: Create a new meta-object with its name as Meta-WV in M of
the warehouse W.
Step 3: Set mc in the meta-object of Meta-WV as all the classes ()
in WV.
Step 4: Collect all the source databases existing in WV, denote them
as A.
Step 5: For every source database bf in A, collect all the attributes,
classes and independent conditions for bf to form the following query
statement Qbf:

Select bf.af1, bf.af2, ..., bf.afi
From bf .c f1, bf .cf2, ...,bf .cft
Where w1, w2, …,wl,

In the above statement, 1≤ i ≤n, 1 ≤ t ≤ k, 1 ≤ l ≤ m, and the select
part, from part and where part are respectively the subsets of the
corresponding parts in WV.
Step 6: For every query statement Qbf, do the following:
Step 6(1): Initially set the counter m = 1, where the counter m is used
to count the looping number.
Step 6(2): Read am from the select part of the query statement.
Step 6(3): Find all the attribute names in am, whose types are classes;
denote them as B.
Step 6(4): For every element in B, do the following substeps:
Step 6(4a): Find its class cid and do the class-integration procedure to
integrate the class cid with the classed C in W.
Step 6(4b): Add it into the attribute mc of the meta-object Meta-WV.
Step 6(4c): Form the following query statement Qm

bf to retrieve the
instances desired:

Select tid
From bf .cid
Where w1, w2, …,wl
where each wj (j = 1 to l) contains the attribute name of class cid.

Step 6(5): Set m = m + 1.
Step 6(6): If m is less than the number of items in the select part of the
query statement (Qbf), go to Step 6(2).
Step 7: Send all of the query statements formed in Steps 5 and 6 to the
data collector.

1 21 2. , . ,..., .
ns s s nb a b a b a

1 21 2. , . ,..., .
kf f f kb c b c b c

1 1.sb a
isb

isb .
if ib c

if
b

.
if ib c

.
if ib c

.
if ib c

∪
∪

https://doi.org/10.15344/2456-4451/2017/123

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 123

Step 8: Get from the data collector the instance identifiers (tid’s),
which satisfy thequery statements.
Step 9: Find the set of instance identifiers which are not currently in I
of the warehouse W. Denote it as D.
Step 10: Request the data collector to get the contents of the instances
in D.
Step 11: Get the instances from the data collector. Denote them as P.
Step 12: Check whether the instances in P satisfy all the dependent
conditions in WV. Denote the instances desired as G.
Step 13: Add the instances set G into I of the warehouse W.
Step 14: Find all the instances in I which satisfy the query statement
in WV and find all their referring instances, and add their instance
identifiers (with the source name bf) into the attribute mi of the meta-
object Meta-WV.
Step 15: Add WV to V in W.

After Step 15, the data warehouse will contain all the desired
instances, the new view definition WV, and the new meta-object for
WV.

Citation: Hong TP, Chen WC, Lin WY, Wang SL (2017) Implementation of View Creation and Deletion with Class Integration under Multiple Data Sources. Int
J Comput Softw Eng 2: 123. doi: https://doi.org/10.15344/2456-4451/2017/123

 Page 3 of 8

An Example for View Creation

An example is given below to demonstrate the above view-creation
algorithm. Assume a data warehouse is formed from two underlying
object-oriented data sources shown in Figures 1 and 2, respectively.

The two databases have the same class names, but lightly different
attributes and methods in the two classes StudInfo and Name. Assume
two instances are created by referring to the class Dept in DS1. One is
called CS with attribute values (001, Computer Science) and the other
is called IM with attribute values (002, Information Management).
Similarly, assume two instances A1 and B1 respectively with attribute
values (001, CS, 1) and (102, IM, 2) are created by referring to the class
Classes, two instances WCC and TPH with attribute values (Chen, Wei,
Chou) and (Hong, Tzung, Pei) respectively are created by referring
to the class Name, and two instances ST01 and ST02 respectively
with attribute values (863201, WCC, A1) and (853001, TPH, B1) are
created by referring to the class StudInfo in DS1. For DS2, assume
three instances are created by referring to the class Dept in DS2. One is
called IE with attribute values (101, Industrial Engineering), another
is called BM with attribute values (102, Business Management) and

Figure 1. The classes in the first data source (DS1).

Figure 2. The classes in the second data source (DS2).

https://doi.org/10.15344/2456-4451/2017/123

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 123

the other is called IM with attribute values (002, Information
Management). Similarly, assume three instances B1, C1 and D1 with
attribute values (102, IM, 2), (101, IE, 1) and (103, BM, 3) respectively
are created by referring to the class Classes, three instances WCY,
WTT and TMW with attribute values (Wang, Chen, Yang, Simon) ,
(Wang, Tzi, Ting, Julia) and (Tsai, Ming, Wen, Joe) respectively are
created by referring to the class Name, three instances ST03, ST04
and ST05 with attribute values (873201, WCY, C1, image), (873204,
WTT, B1, image) and (853202, TMW, D1, image) respectively
are created by referring to the class StudInfo. Assume two view
definitions, FreshMan and BothClassList are given in Figure 3.

Two meta-objects, Meta-FreshMan and Meta-BothClassList, are
created in the data warehouse. For the meta-object Meta-FreshMan,
Meta-mv = Meta-FreshMan, mc = (DS1.StudInfo, DS1.Name, DS1.
Classes, DS2.StudInfo, DS2.Name, DS2.Classes), and mi = (DS1.ST01,
DS1.WCC, DS1.A1, DS2.ST04, DS1.WCY, DS1.C1). The above meta-
objects are represented by a graph as shown in Figure 4.

Only eight instances, including ST01, ST04, WCC, WTT, A1, B1,
C1 and IM satisfy the conditions of the view definitions. These eight
instances are thus sent from the source database to the warehouse and

Citation: Hong TP, Chen WC, Lin WY, Wang SL (2017) Implementation of View Creation and Deletion with Class Integration under Multiple Data Sources. Int
J Comput Softw Eng 2: 123. doi: https://doi.org/10.15344/2456-4451/2017/123

 Page 4 of 8

are thus reformatted and saved in the object-oriented
data warehouse. Also assume the following new view
in Figure 5 is to be defined in the data warehouse:

Figure 3. Two view definitions in the example

Figure 4. A graphical representation of the meta-objects in the example.

Figure 5. A new view definition

https://doi.org/10.15344/2456-4451/2017/123

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 123

The view-creation algorithm processes the new view definition as
follows.

Step 1. Since the classes DS1.StudInfo and DS2.Studinfo in the new
view definition have been selected by the previous views in W, the
algorithm executes Step 2.
Step 2. Create a new meta-object Meta-SecondStud in W.
Step 3. The attribute mc in the meta-object Meta-SecondStud is set as
DS1.StudInfo and DS2.StudInfo.
Step 4. Since the two source databases DS1 and DS2 are used in the
new view, A is {DS1, DS2}.
Step 5. Form the following query statements:

Query QDS1 for DS1
Select StudClass.DeptOf.DeptName, StudClass.ClassID, StudID
From StudInfo
Where StudClass.Grade = 2

Query QDS2 for DS2
Select StudClass.DeptOf.DeptName, StudClass.ClassID, StudID
From StudInfo

Note that in this step, the condition DS1.Dept.DeptName= DS2.
Dept.DeptName is not put in the above queries since it is not an
independent condition.
Step 6. For the query statement QDS1, do the following substeps:

Step 6(1). Set the counter m = 1.
Step 6(2). Read a1 = StudClass.DeptOf.DeptName.
Step 6(3). Since in a1, the attribute names StudClass.DeptOf and
StudClass are of type class, B is thus {StudClass.DeptOf, StudClass}.
Step 6(4a). Since the class of DeptOf is Dept and the class of StudClass
is Classes, both of them are thus checked by the Class-Integration
procedure. Since both of them have been used in the data warehouse
W, they are not processed.
Step 6(4b). Add the items DS1.Dept and DS1.Class into the attribute
mc in the meta-object Meta-SecondStud.
Step 6(4c). Form the following two query statements as follows:

Query Q11
DS1:

Select tid
From DS1.Classes
Where Grade = 2;

Query Q12
DS1:

Select tid
From DS1.Dept

Step 6(5). Set m = m + 1; m is thus 2.
Step 6(6). Repeat Steps 6-2 to 6-4 to find the other query statements
as follows:

Query Q21
DS1:

Select tid
From DS1.Classes
Where Grade = 2;
Query Q11

DS2:
Select tid
From DS2.Classes.

Citation: Hong TP, Chen WC, Lin WY, Wang SL (2017) Implementation of View Creation and Deletion with Class Integration under Multiple Data Sources. Int
J Comput Softw Eng 2: 123. doi: https://doi.org/10.15344/2456-4451/2017/123

 Page 5 of 8

Query Q12
DS2:

Select tid
From DS2.Dept
Query Q21

DS2:
Select tid
From DS2.Classes

Also, the items DS2.Dept and DS2.Class are added into the attribute
mc in the meta-object Meta-SecondStud.
Step 7. Send the query statements QDS1, QDS2, Q

11
DS1,Q

12
DS1, and Q11

DS2
(The query statements Q21

DS1 and Q21
DS2 are the same as Q11

DS1 and
Q11

DS2 and are thus removed) to the data collector.
Step 8. In the source database DS1, the instance ST02 satisfies QDS1,
instance B1 satisfies Q11

DS1 and instances CS and IM satisfy Q12
DS1 In

the source database DS2, the instances ST03, ST04 and ST05 satisfy
QDS2, instances B1, C1 and D1 satisfy Q11

DS2 instances CS, IE and BM
satisfy Q12

DS2 The eleven instance identifiers {ST02, ST03, ST04, ST05,
B1, C1, D1, CS, IM, IE, BM} (Since the instances B1 in DS1 and B1 in
DS2 inherit from the same class Classes, only one instance identifier is
sent back from the data collector), are thus sent back to the warehouse
W.
Step 9. Check the eleven instance identifiers in W. D is thus {ST02,
ST03, ST05, B1, C1, D1, IE, BM}.
Step 10. Request the data collector to get the instances in D.
Step 11. The instances ST02, ST03, ST05, B1, C1, D1, IE and BM with
their contents are thus sent back to the warehouse W. Denote them
as P.
Step 12. Since only the instances ST02 and ST03 satisfy the dependent
condition sentence DS1.Dept.DeptName = DS2.Dept.DeptName in
WV, G is thus {ST02, ST03}.
Step 13. Add G to I of W.
Step 14. Since the instances ST02, B1 and IM in DS1 and the instances
ST03, B1 and IM in DS2 are retrieved by view SecondStud, the items
DS1.ST02, DS1.B1, DS1.IM, DS2.ST03, DS2.B1 and DS2.IM are thus
added into the attribute mi of meta-object Meta-SecondStud.
Step 15. The view definition SecondStud is added to the warehouse W.

After the view-creation procedure is executed, all of the instances
used in the view SecondStud are stored in the data warehouse. Also,
the meta-object Meta-SecondStud is automatically created for later
management and maintenance of the view SecondStud. The graphical
representation of the warehouse after the view SecondStud has been
inserted is shown in Figure 6, where a circle represents a class, a
rectangle represents an atomic type, and an ellipse represents a set of
attributes.

The Algorithm of View Deletion under Multiple Data
Sources

When a view is no longer needed, it may be deleted from the object-
oriented data warehouse. The statement for deleting a warehouse view
is stated as follows:

Delete Warehouse View WV.

The implementation algorithm for processing it is stated below.

https://doi.org/10.15344/2456-4451/2017/123

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 123

The view-deletion algorithm:

Input: A data warehouse W(C, V, I, M) with a view-deletion statement
for deletingview WV.
Output: A revised data warehouse W’(C', V’, I’ , M') after WV is
deleted.

Step 1. Check whether the view WV has been in W. If it has, execution
the next step; otherwise, set W' = W and stop the execution.
Step 2. Initially set the counter j = 1, where the counter j is used to
count the looping number.
Step 3. Read the j-th item mcj (representing bf.cid, the class cid of the
source database bf) from the mc part in Meta-WV.
Step 4. Check whether the class cid is used by the other meta-objects
in M. If it is, then do nothing; otherwise, remove the class cid and all
the instances inheriting from the class cid.
Step 5. Set j = j + 1.
Step 6. If j < |mc|, go to Step 3; otherwise, do the next step.
Step 7. Set the counter j = 1, where the counter j is used to count the
looping number.
Step 8. Read the j-th item mij (representing bf.tid, the instance tid of the
source database bf) from the mi part in Meta-WV.

Citation: Hong TP, Chen WC, Lin WY, Wang SL (2017) Implementation of View Creation and Deletion with Class Integration under Multiple Data Sources. Int
J Comput Softw Eng 2: 123. doi: https://doi.org/10.15344/2456-4451/2017/123

 Page 6 of 8

Step 9. Check whether the instance tid is used by the other meta-
objects in M. If it is, then do nothing; otherwise, remove the instance
tid from I.
Step 10. Set j = j + 1.
Step 11. If j < |mi|, go to Step 8; otherwise, do the next step.
Step 12. Remove WV from V and remove the meta-object Meta-WV
from M.

After Step 12, the view definition WV, the meta-object Meta-WV,
and all the unused classes and instances can be removed from the
data warehouse. An example is given below to demonstrate the view-
deletion algorithm.

An Example for View Deletion

Continuing the above example, assume the following statement is
given to delete the view FreshMan in the data warehouse:

Delete Warehouse View FreshMan.

The view-deletion algorithm processes the statement as follows.

Step 1. Since the view FreshMan has existed in the data warehouse W,
the algorithm executes Step 2.
Step 2. Set the counter j = 1.

Figure 6. The graphical representation of the warehouse after the view has been inserted.

https://doi.org/10.15344/2456-4451/2017/123

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 123

Step 3. Read the first class DS1.StudInfo from the mc part of the meta-
object Meta-FreshMan.
Step 4. Since the class StudInfo is used by the view SecondStud, all of
the instances of the class StudInfo are kept.
Step 5. Set j = j + 1. j is thus 2.
Step 6. Repeat Steps 3 to 5 for the remaining five classes DS1.Name,
DS1.Classes, DS2.StudInfo, DS2.Name and DS2.Classes. Since the class
Name is not referred to by views in the data warehouse W except by
view FreshMan, the class Name and its instances WCC and WCY are
thus removed from C and I of the warehouse W.
Step 7. Set the counter j = 1 again.
Step 8. Read the first instance DS1.ST01 from the mi part of the meta-
object Meta-FreshMan.
Step 9. Since the instance ST01 is not referred to by other views, the
instances ST01 is thus removed from I.
Step 10. Set j = j + 1. j is thus 2
Step 11. Repeat Steps 8 to 10 for the remaining five instances DS1.
WCC, DS1.A1, DS2.ST04, DS2.WCY and DS2.C1. Since the instances
ST04, A1 and C1 are not referred to by views in the warehouse W
except by view FreshMan (the instances WCC and WCY were removed
in Step 6), they are thus removed from I.
Step 12. The view definition FreshMan and the meta-object Meta-
FreshMan are removed from V and M.

Citation: Hong TP, Chen WC, Lin WY, Wang SL (2017) Implementation of View Creation and Deletion with Class Integration under Multiple Data Sources. Int
J Comput Softw Eng 2: 123. doi: https://doi.org/10.15344/2456-4451/2017/123

 Page 7 of 8

After Step 12, the view FreshMan and its meta-object are removed
from the data warehouse. Moreover, the instances ST01, ST04, A1, C1
and all the instances inheriting from the class Name are deleted. A
graphical representation of the warehouse after the view FreshMan
has been deleted is shown in Figure 7.

Conclusion

In this paper, we have extended our previous data model from a
single source to multiple-source environments. The meta-objects have
been presented to make the creation and deletion of views in an object-
oriented data warehousing easy and efficient. A class-integration
procedure has also been designed to handle the integration of the
classes with the same names in the multiple data sources. Moreover,
two implementation algorithms for view creation and view deletion
have been proposed. In the future, we will attempt to use ontology to
flexibly find out similar classes, instead of the classes with the same
names, in class integration from multiple data sources.

Conflict of Interest

No authors have a conflict of interest or any financial tie to disclose.

References

1.	 Chaudhuri S, Dayal U (1997) An overview of data warehousing and OLAP

technology. ACM SIGMOD Record 21: 65-74.

Figure 7. The graphical representation of the warehouse after the view has been deleted.

https://doi.org/10.15344/2456-4451/2017/123
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/sigrecord.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/sigrecord.pdf

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 123

2.	 Chen WC, Hong TP, Lin WY (1998) View maintenance in an object-oriented
data warehouse. The Fourth International Conference on Computer
Science and Informatics, USA, pp. 353-356

3.	 Chen WC, Lin WY, Hong TP (1998) Object-oriented data warehousing and
its incremental view maintenance. The Ninth Workshop on Object-Oriented
Technology and Applications, Taiwan, pp. 139-144

4.	 Inmon WH, Kelley C (1993) Rdb/VMS: Developing the Data Warehouse.
QED Publishing Group, Boston, Massachusetts

5.	 Kim W (1995) Modern Database Systems, ACM Press, USA

6.	 Pahwa P, Chhabra R (2014) An object oriented data warehouse design.
International Journal of Soft Computing and Engineering 4: 5-7

7.	 Ra YG, Rundensteiner EA (1997) A transparent schema-evolution system
based on object-oriented view technology. IEEE Transaction on Knowledge
and Data Engineering 9: 600-624

8.	 Rundensteiner EA (1992) A methodology for supporting multiple views
in object-oriented databases. The 18th International Conference on Very
Large Data Bases, Vancouver, Canada, pp. 187-198

9.	 Scholl MH, Laasch C, Tresch M (1991) Updatable views in object-oriented
databases. The Second International Conference on Deductive and Object-
Oriented Databases, Munich, Germany, pp. 189-207

10.	 Suri P, Sharma M (2011) The succession of data warehouse using object
oriented approach. International Journal of Engineering Science and
Technology 3: 1153-1158

11.	 Trujillo J, Palomar M, Gomez J, Song IY (2001) Designing data warehouses
with OO conceptual models. IEEE Computer 34: 66-75

12.	 Zhuge Y, Garcia-Molina H (1998) Graph structured views and their
incremental maintenance. The 14th International Conference on Data
Engineering, Orlando, USA, pp. 116-125

Citation: Hong TP, Chen WC, Lin WY, Wang SL (2017) Implementation of View Creation and Deletion with Class Integration under Multiple Data Sources. Int
J Comput Softw Eng 2: 123. doi: https://doi.org/10.15344/2456-4451/2017/123

 Page 8 of 8

https://dl.acm.org/citation.cfm%3Fid%3D151194
https://dl.acm.org/citation.cfm%3Fid%3D151194
https://www.ijsce.org/attachments/File/ICCIN-2K142014/6-ICCIN-2k14.pdf
https://www.ijsce.org/attachments/File/ICCIN-2K142014/6-ICCIN-2k14.pdf
http://ieeexplore.ieee.org/document/617053/
http://ieeexplore.ieee.org/document/617053/
http://ieeexplore.ieee.org/document/617053/
http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.101.4202%26rep%3Drep1%26type%3Dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.101.4202%26rep%3Drep1%26type%3Dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.101.4202%26rep%3Drep1%26type%3Dpdf
https://link.springer.com/chapter/10.1007/3-540-55015-1_10
https://link.springer.com/chapter/10.1007/3-540-55015-1_10
https://link.springer.com/chapter/10.1007/3-540-55015-1_10
https://www.researchgate.net/publication/50406845_THE_SUCCESSION_OF_DATA_WAREHOUSE_USING_OBJECT_ORIENTED_APPROACH
https://www.researchgate.net/publication/50406845_THE_SUCCESSION_OF_DATA_WAREHOUSE_USING_OBJECT_ORIENTED_APPROACH
https://www.researchgate.net/publication/50406845_THE_SUCCESSION_OF_DATA_WAREHOUSE_USING_OBJECT_ORIENTED_APPROACH
http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.19.4361%26rep%3Drep1%26type%3Dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.19.4361%26rep%3Drep1%26type%3Dpdf
http://ieeexplore.ieee.org/document/655767/
http://ieeexplore.ieee.org/document/655767/
http://ieeexplore.ieee.org/document/655767/
https://doi.org/10.15344/2456-4451/2017/123

