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Introduction

Context: ownership identification of reindeer calf

Reindeer herding is the major economic activity of the Sami 
people, who are the indigenous people of northern Sweden, Norway 
and Finland. The Sami people lived and worked in reindeer herding 
groups, which consisted of different families within a designated area 
and which were formed of working partnerships, where members 
had individual rights to resources, but helped each other with the 
management of the herds, or when hunting and fishing. Reindeer 
husbandry in Norway today is a small industry on a national scale, 
but is important economically and in employment terms; it is also one 
of the most important parts of the Sami culture. Reindeer herding in 
Norway was regulated in 2007 and allowed only those who have the 
right to a reindeer earmark to undertake reindeer husbandry in the 
Sami reindeer herding area. This condition applied only to persons 
who are Sami themselves, whose parents or their grandparents have 
or had reindeer herding as their primary occupation. A reindeer 
earmark is a combination of one to many cuts in a reindeer’s ears, 
which all together tell who the reindeer owner is. There are around 20 
different approved cuts in addition to some 30 different combinations 
of cuts, which have their own names. A committee is in charge of 
approving earmarks before they are implemented and all reindeer in 
the Sami reindeer husbandry area shall be marked with the owner’s 
registered earmark by 31 October the same year as it is born. Reindeer 
are semi-wild and require large areas for their grazing, they are also 
often frightened and are forced to flee from natural pastures. Most 
of the time, they are left to wander freely unaccompanied with their 
herders [1]. Reindeer herders typically make two migrations with 
their animals each year. During winter, reindeer are left to breed in 
the highlands, but just before spring, when food becomes scarcer in 
the mountains, natural instinct directs the herd to migrate to the low 
grounds for greener pastures [2]. Reindeer are intercepted by their 
herders and are taken to the spring pastures before the snow melts 
and before the mothers start calving. In spring, they move back to the 
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mountainous coastal region where they feed throughout the summer, 
the calves are soon born and stay with their mothers for protection 
[3]. In autumn, the herders return to the grazing locations to gather 
the reindeer from the mountains before the breeding season starts. 
This is the time when the new calves are branded. Each calf is 
captured, vaccinated and is given an identification tag or ear mark 
to distinguish which cow the calf belongs to and to which owner 
they belong [2]. As meat production became more important since 
the beginning of the 20th century, reindeer herding became more 
extensive and Sami reindeer herders started to implement modern 
technologies, such as snow mobiles and various other mechanical and 
electronic aids, which became a major feature of modern reindeer 
herding. Among those technologies, ear identification tags are being 
used extensively. However, identifying the ownership of new born 
calves remains a major problem for reindeer herders [1]. Recognizing 
and matching reindeer calves to the different mothers is traditionally 
performed in two steps; first, the animals are gathered in a small pen. 
All female reindeer get individual numbers sprayed on the skin at 
each side of the animal. Each owner uses one specific color. Unique 
number plates are hanged to collars around the necks of the calves. 
Thereafter, the animals are released to larger pens to calm down and 
are put under surveillance by reindeer owners and herders using
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Abstract

This paper presents a distributed algorithm for identifying the ownership of new-born reindeer calves 
using wireless sensor networks (WSNs). Reindeer are semi wild animals giving birth while in the wild. 
Although reindeer cows usually carry identification tags or signs of their owners, it is difficult to identify 
the ownership of the calves within a mixed herd. Currently, identification is performed in the traditional 
way which is stressful on both animals and herders and quite costly and time consuming. In this work, 
a localization algorithm implemented on a WSN is considered to get rid of matching mother reindeer 
to their calves in a fully automatic way. In particular, the proposed distributed localization algorithm 
is based on two phases where sensors nodes are attached to the reindeer in a confined space with the 
objective to identify the animals keeping close together the most of the time, which are reckoned to 
be the mother reindeer and her calf. At first, the initial estimated nodes’ positions are obtained from 
an existing biased-maximum likelihood estimator (B-MLE) based on the log-normal shadowing model 
(LNSM). Secondly, each sensor node seeks to estimate its local map (i.e., its own position and those 
from its neighbors) by using an on-line distributed stochastic approximation algorithm (DSA) such the 
identification mother-calves can be done. We present numerical are issued to the standard ZigBee IEEE 
802.15.4 operating at 2:4 GHz by means of radio devices WSN430 (equipped with CC2420 chips).
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binoculars, in order to identify which reindeer calf is following which 
cow. Thereafter, reindeer owners compare the different observations 
to guaranty that the correct mother is matched to her calf [4]. The 
next step is to gather the reindeer herd again in a small pen, capture 
the calves, remove the number plates and replace them with the 
approved ear cutting or a tag. This handling procedure is a painstaking 
process, which demands considerable amount of man power, and long 
periods of observation of the herd, and is stressful to both herders and 
animals alike [4]. With the advancement of wireless communications 
and the wide spread of wireless networks, it has become possible to 
utilize those technologies for the benefits of reindeer herders and their 
animals. This paper proposes a technique based on WSN technology 
for ownership identification of new-born reindeer calves. Various 
prospective identification technologies such as RFID tag, GPS collars 
or UHF nodes and gateways are discussed in this work to explore 
their feasibility for the proposed application [1]. In this concept, it 
is proposed to equip the reindeer cows and calves with transmitter 
devices of the selected technology, and monitor the movement of the 
herd in a confined space, facilitated with a grid of signal receivers, 
corresponding to the transmitter device attached to the reindeer. 
A suitable algorithm has to be devised to analyze the gathered data 
and recognize the pairs of tags which keep close together most of 
the time, which are reckoned to be the mother reindeer and her calf.

Overview of WSN-based localization techniques

The problem of self-localization involving low-cost radio devices 
in wireless sensor networks (WSN) can be viewed as an example of 
the Internet of Things (IoT). Among the several applications related 
to this problem, location services may be namely offered by small 
devices carried by persons in indoor environments. Over the last 
ten years, several overview papers dealing with the description and 
classification of localization techniques in this context have been 
published (see, for instance, [5-7]).

In this work, we focus on the ranging technique relying on received 
signal strength indicator (RSSI) for indoor scenarios. In [8], the RSSI 
metric has been related to the Euclidean distance through a log-
normal shadowing model (LNSM) describing the signal propagation 
in free-space. A first approach consists of assuming the LNSM 
and applying a classical maximum likelihood estimator (MLE) to 
compute the nodes’ positions. This has been proposed, for instance, 
in [9], where the parameters of the propagation model are considered 
equal for all landmarks (i.e., nodes whose positions are known, also 
called anchor nodes). Following the same approach, the parameters 
have been considered different for each landmark in in [10]. The 
experimental results there obtained on real test beds show a mean 
localization accuracy of 1m.

When dealing with closed and relatively small spaces, RSSI is not 
accurate enough and the effects of multipath, possible blocking objects 
and antenna orientation may be also included in the propagation 
model as outliers (see, for instance, [11,12]). A biased-maximum 
likelihood estimator (B-MLE) involving a random factor related to 
the possibly outliers has been studied in [13], this estimator has been 
experimentally proved to reduce the mean error of the classical MLE. 
The optimization problem is defined for each single unknown position 
given several RSSI values from a set of surrounding landmarks.

Our work aims to solve the localization problem of a set of nodes’ 
positions in a distributed and cooperative way, i.e., both landmarks 
and neighboring nodes communicate and the data processing and 
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computation is hold by each sensor node without the need of sink 
nodes (e.g. central station). As the likelihood function of the LNSM 
is not convex with respect the unknown positions, a basic gradient 
descent method suffers from the initialization issue. We take 
inspiration from the two phase methods of [14,15], which consider 
an initial guess step followed by a cooperative refinement step. In 
order to improve the accuracy achieved by the B-MLE [13], we use 
the on-line distributed stochastic approximation (DSA) approach 
of [16] to minimize the mean square error of the estimated distance 
derived from the noisy RSSI received data. The iterative DSA 
algorithm involves a first local update based on stochastic gradient 
descent (see [16]) given a new RSSI measurement at each sensor 
node. Then, an asynchronous communication step (see [17]) involves 
the exchange of information between two randomly selected nodes 
to reach a consensus on the set of estimated positions. It allows 
each sensor node to build a local map of itself and its neighbor 
nodes. Our approach is tested on real indoor scenarios: the two 
rooms from [18] and a number of selected sensor nodes from the 
FIT IoT-LAB Rennes platform [19] (platform previously known as 
SensLAB where the new generation of sensor nodes ARM Cortex 
M3 with ATMEL radio chipset will be gradually incorporated).

The paper is organized as follows. First, Section II gives an overview 
of the proposed concept. Section III introduces the notation in use 
throughout the paper and recalls the lognormal shadowing model 
(LNSM) for the observed signal. The main equations of the biased log-
normal shadowing model (B-LNSM) are introduced in Section IV-A. 
The initialization phase of the localization algorithm proposed here 
is presented in Section IV-B, while the refinement phase is detailed 
in Section V. Section VI describes the test bed of our experimental 
results, which are subsequently summarized, compared and discussed. 
Finally, conclusions are provided in Section VII.

WSN-Based Reindeer’s Calf Identification Concept

A technique based on wireless sensor networks to identify the 
ownership of the calves is presented in this work. It is proposed to 
furnish the new born calves with an electronic identification device, 
such as RFID tags, GPS collars or UHF nodes, with a system set-
up facilitated with receivers, gateways and necessary software. The 
reindeer herd is confined in a restricted space, which is equipped with 
a grid of signal receivers, corresponding to the transmitter devices 
attached to the reindeer, and using proper localization algorithms. 
Movement of transmitter tags is tracked in order to recognize the 
pairs of tags which keep close together most of the time, which 
indicate the mother and calf reindeer. Due to the fact that reindeer 
is a wild animal species, they tend to be more cautious than domestic 
animals; hence they tend to avoid confined spaces and close objects 
mounted by humans, which makes the use of passive RFIDs less 
efficient due to their low range, as the receivers have to be placed 
at a close proximity to the RFIDs. This demands the application of 
active RFIDs to both mothers and calves, or the use of other sensor 
network devices such as GPS collars or UHF nodes and respective 
gateways. For example, active RFID tags operate at higher frequencies 
than passive tags because of their on-board power source, commonly 
455 MHz, 2:4 GHz, or 5:8 GHz- depending on application’s read 
range and memory requirements. Readers can communicate with 
active RFID tags across 20 to 100 meters. In the same way, tags can 
track the movement of highly mobile objects in wider areas than 
passive tags [20]. In this procedure, the pen where the animals are to 
be gathered for tagging is facilitated with a WSN, assuming that the 
WSN is readily available with a set of low cost sensor nodes such those 
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used in Section VI (WSN430). Central sensor nodes are 
mounted on posts at the centers of the circles indicated in 
(Figure 1), which indicate the coverage range of the routers.

Coverage of the wireless network is configured in such a way to 
ensure exposure of the whole pen, with minor inevitable pockets of 
uncovered areas, which have to be kept to a minimum. RFID tags are 
tracked and location data is logged into a computer program, where 
data is analyzed to match couples of tags together.

Framework

The following framework to solve the localization problem 
in a distributed manner using WSNs, i.e. local measures and 
communications through the network of sensor nodes, is based on 
the previous work proposed in [21].

Notation

Consider the context of N sensor nodes placed within a two-
dimensional space p × qm2 whose unknown positions are defined by
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the set           which is also represented by every pair of coordinates as
                                                                     . The euclidean distance between each pair 
of nodes i and j is defined as                                                                        . 
The set                                                             defines the known positions 
from M landmarks, or anchor nodes, with M << N. Given a radio 
range r, we define for each node i the set of its neighboring nodes as   
                             and the set of its neighboring landmarks as 
                          . The objective of each sensor node is to localize 
itself and obtain a local map from its estimate position and those 
from its neighboring sensor nodes. The abbreviation r.v. stands for 
random variable while the abbreviation i.i.d stands for independent 
and identically distributed.

Benchmark: log-normal shadowing model (LNSM)

We recall the empirical model used to describe the received signal 
strength indicator (RSSI) data as a function of the distances between 
the sensor nodes. The log-normal shadowing model (LNSM) is 
based on the log-distance path loss model of [8], which describes the 
average path loss PL(d) expressed in dB for a distance d as given a path 
loss exponent η depending on the propagation medium, a reference 
distance do and its corresponding path loss PL(d0) value. The LNSM 
captures the random shadowing effects that may occur at different 
locations having the same distance separation, i.e., the addition of a 
zero mean Gaussian r.v. (random variable)                          to the average  
path loss PL(d). The RSSI can be described as the noisy received 
power at distance d given an average path loss PL(d), and an emitted 
power PT i.e.,                                           . Assume that d0 = 1m as usual 
in indoor context, the emission power PT is 0 dBm and define PL(d0) 
as a parameter P0. The general expression of the LNSM for the RSSI 
r.v. P is:

The above equation (1) depends on the propagation parameters
P0, η and σ2, which may not be homogeneous in indoor scenarios. 
A maximum likelihood estimator (MLE) can be used to learn these 
parameters from the RSSI values collected from a set of landmarks 
whose positions are known. Since the average values of the RSSI 
measured at different positions do not always decrease with the 
distance (see the learning phase in [10]), we let the parameters of the 
propagation model differ from one landmark to another. As a result, 

Figure 1: Proposed configuration of the localization set-up. Suggested 
area of the pen is 50×90 m2 (dashed rectangle). Large black circles 
represent coverage area of the central sensor nodes which are 
represented by the violet dots. Mother and calf reindeer are represented 
by the large and small pairs of coloured dots in dark and light blue.
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Figure 2. Testbed at FIT IoT-LAB platform (left) and RSSI values (right) collected at node 158 and node 183 from the 6 landmarks. 
The marker (*) highlights the real RSSI values. The markers (5) and (+) indicate, respectively, the average and the minimum 
and maximum values from 100 i.i.d. random samples drawn when considering the theoretical LNSM in (1) given the estimated 
parameters in Table 1.
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we do not treat all landmarks equally during the statistical estimation
(cf. Tables ?? and 1). Moreover, in order to show how, in general, the 
definition (1) does not match in a real indoor environment, (Figures 
2) highlights the presence of a bias probably due to multipaths. 
For instance, in Figure 2 node 240 collects (27; 7; 21; 203; 26; 533) 
packets from landmarks whose identifiers (Node_ID) are (157; 163; 
176; 214; 236; 244). There is a bias in values coming from landmark 
244, even if this is the one closest to node 240. This sensor node is 
placed at the boundary and immediately close to the wall of the room.

Landmarks 163 and 176, which are placed at distances 8:87mand 
5:83m from node 240, are aligned with its line-of-sight. Thus, 240 
receives the smallest number of packets (7 and 21, respectively) from 
these nodes, and the RSSI values slightly match with the model.

Position Estimation: Intialization 

Principle: biased log-normal shadowing model     

This section recalls the dynamic method introduced by [13] to 
estimate the position of a sensor node from a set of landmarks. The 
sensor node seeks to reduce the effect of any potentially aberrant 
landmark whose measurements do not improve localization accuracy. 
This effect is compensate by introducing a constant bias which 
becomes an additional variable to estimate and replaces the log-
normal shadowing model of the measurements associated to this 
landmark. Let us denote by RSSIj;L the jth RSSI sample measured by the 
sensor node on packets coming from a given landmark L. If we denote 
by P0,L,ηL and σL

2 the LNSM specific parameters for landmark L, we can 
rewrite the equation (1) in the general case, replacing measurements 
coming from a given landmark O by a constant bias, β , as follows:

where dL is the distance to landmark L that we try to estimate and 
1 is the indicator function, which is equal to 1 when the subscript 
expression is true and 0 otherwise. Abnormal landmarks can be 
detected from equation (2), and the biased LNSM can be fully 
characterized. Thus, the biasedmaximum likelihood estimator may be 
used to compute the sensor node position from RSSI measurements 
collected from M landmarks. The aberrant landmark can be identified 
by comparing the global likelihood values when each landmark is 
considered as outlier.

Biased-maximum likelihood location estimation method (B-MLE)

Combining all the measured values altogether, we can apply a 
maximum likelihood estimator on this new model to compute the 
likelihood expressions in the case where landmark O is considered as 
abnormal. If we denote by TL the number of samples received from 
landmark L, the likelihood function is expressed as follows for every 
landmark L≠O:

and for the outlier (abnormal) landmark, O, it becomes:

The global likelihood function from the data set, reflecting the 
coherence of the whole system when landmark O is the outlier one is 
then simply the sum of equations (3) and (4) over the M landmarks:
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Thus, the maximum likelihood criterion applied to equation (5) is 
used to infer the sensor node position and the bias. Using the fact 
that it can be solved by separating the problem, the B-MLE solution 
is given by:

Where

Position Refinement: Improving The Accuracy

Principle: distributed stochastic approximation (DSA)

The objective in this phase is described under a global maximum 
likelihood estimation of the log-distances between the N sensor nodes 
positions. From the LNSM in equation (1), we define the estimated 
log-distance    given the estimated average RSSI    (i.e, from a collection 
of T i.i.d. noisy RSSI measurements (P1,...,PT ) at distance d compute 
the estimated average                         ) as follows:

We define the sets of RSSI measurements collected for each sensor 
node i as                        from its neighboring sensor nodes and  

                    from its neighboring landmarks. For each sensor node i, 
the set of positions of the neighboring nodes’ is denoted as

                                                     .  The aim is to solve the global opt-
imization problem defined as:

Where

On-line gossip-based implementation

Problem (8) is solved by means of the on-line distributed stochastic 
approximation algorithm (DSA). At any time t ≥ 0, each sensor node 
i updates the sequence of its estimated neighboring nodes’ positions
                                                                corresponding to its local map. 
The iterative procedure of the DSA algorithm relies on the following 
two steps:
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[Local gradient descent step][16] At iteration t each sensor node
i computes a temporary estimate of its positions’ set from the local
current measurements                                                         as:

Where                 is a decreasing step sequence s.t. 
 
[Gossip averaging step] [17] At each iteration time t two uniformly
random selected nodes exchange their common estimated positions
and average their values. The final updates are set as follows:

Otherwise                                                                     then,
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Numerical Results: Experiences From WSNS

For the considered testbeds, the procedure is described as follows. 
Each of the M landmarks broadcasted 100 frames. Then, the first NL 
sensor nodes selected for the learning phase computed the set of the 
propagation model parameters                                                as detailed in [10]. 
We chose two different sizes NL of the learning data set, a small set 
involving the first 10 sensor nodes’ positions and a large one from the 
first 25 sensor nodes’ positions. The RSSI values were collected from 
the set of received frames, and then the parameters were estimated 
by applying the maximum likelihood criterion. The remaining N-NL 
sensor nodes were able to compute a first estimate of their positions 
using the B-MLE [6] given the parameters and the RSSI values from 
theirs corresponding received frames. The refinement phase was 
subsequently applied assuming the latter positions as the initialization 
values as detailed by our algorithm in Section V-B. At each iteration, 
a single frame was broadcasted by each sensor in order to compute 
the local estimates defined by equation (9) and only two sensors 
randomly selected exchanged their common estimate positions which 
were finally updated as the average given by equation (10).  

Testbed description: FIT IoT-LAB platform 

The testbeds were chosen at the FIT IoT-LAB’s platform of size 5 ×9m2 

involving the positions of 44 sensor nodes and 6 landmarks which 
are located in a big storage room of size 8 ×11m2 containing different 
objects. Sensor nodes are placed at the ceil which is 1:9m height from 
the floor in a grid organization. There was no one in the room most of
the time and there was only a wireless access point located in the 
corridor which is separated by a cinder wall (no electromagnetically 
isolating). The estimated parameters are summarized in Table 1.

Comparison and discussion

We have tested the algorithms proposed in Sections IV-B and V-B 
whose respective procedures are defined by equations (6) and (9)-
(10). In order to evaluate the performance of such methods and 
quantify the achieved accuracy, we define the normalized mean 
deviation (NMD) as the average mean deviation (MD) error of the N 
estimated positions normalized by the testbed dimensions i.e. p ×qm2. 
It can be defined as:

Where        are the set of the N estimated positions. Figure 3 
illustrates the decreasing curves of the average mean deviation of 
the N positions along the iteration instant t from each testbed, i.e. 
Experience 1, Experience 2 and Experience 3. Note that as being a real 
environment, the algorithm converged to an asymptotic error, which 
may depend on the testbed’s parameters.

Figure 3 shows the evolution of the mean deviation error MD as 
a function of the iterative steps during the refinement phase, which 
involves the communication between two sensor nodes at each step. 
The earliest improvement (24 steps) has been obtained in Experience                                    
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2 of the testbed. However, for this experience the accuracy after the 
refinement phase has been the worst achieved as the curve of the mean 
deviation error remains always above. The best accuracy was achieved 
at Experience 1 for the considered testbed even if the convergence was 
slower and 89 refinements steps were required to improve the mean 
deviation error. As reported in Table 2, less than 80 cm was obtained 
from Experience 1 of the testbed.

Figure 5 , 6 and 7 show the corresponding normalized NMD values 
of each sensor node position                before and after the refinement 
phase. For Experience 1s about 76% positions were improved when 
the small learning data set was chosen (NL = 10). However, the 
percentage decreased to 55% when 25 positions where considered 
during the learning phase.

 

LM_ID LM157 LM163 LM176 LM214 LM236 LM244

P0 62019 63.61 58.4 63.33 58.55 67.67

η 1.76 2.83 3.39 1.98 2.80 2.29

σ2 19.06 40.87 37.04 75.62 30.03 18.97

2
0, ,{( , )} 1M

k k k kP η σ =

Table 1. Estimated parameters from the FIT IoT-LAB testbed when the 
small data set of 10 sensor nodes is selected.
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Figure 3. Convergence of the DSA along the iteration time instants t for 
each testbed when considering the small data learning set (NL = 10). 
Markers ( ×,✳,   ) emphasize the iteration time when the error MD of the
DSA refinement phase is lower than the error MD computed after the 
position estimation phase by the B-MLE.

Figure 4. Convergence of the estimated position node whose id 
is 173 during the refinement phase through algorithm DSA at 
different iteration times (t = 0, 10, 20, 30, 50, 100, 200, 500).

Figure 5.                 for Experience 1 before (blue) and after (red) the 
refinement phase performed by the algorithm in Section V-B when 
considering NL = 10 for the learning data set.
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In order to summarized the results for each testbed, Table 2 displays 
the average error, both MD in meters and the respective normalized 
value as NMD. The numerical results are reported when considering 
the two sizes of data sets chosen during the learning phase of the 
B-MLE (NL = 10 and NL = 25). In addition, we computed the ratio of 
the accuracy improvement as the percentage              where     defines the 
ratio between the NMD achieved after the refinement phase with the 
proposed DSA (Section V-B) and those achieved by the B-MLE. We 
also computed the ratio regarding the number of improved positions 
after the refinement phase (see the ratio Positions improved in Table 
2). From the results reported in Table 2, we are led to conclude that, 
in general, the best accuracy improvement has been obtained in the 
case of the small data learning set, i.e., NL = 10. The best accuracy 
about 70 cm is achieved from Experience 1. However, the latter case 
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required the highest number of pairwise communications 
between the sensor nodes during the refinement phase. Our 
results are consistent compared to other experiments involving 
real indoor scenarios with similar dimensions and number of 
sensor nodes. See for instance the accuracy between 1:5-2:5 
m from the experiment of [9] or the 2:27m reported in [22].

Conclusion

In this paper, a novel application of WSN based on RFID tags is 
addressed for ownership identification of new-born reindeer calves, 
in order to mark the calves with ear marks or identification tags of 
their relevant owners. The principle of identification is based on 
matching reindeer calves to their mothers through estimating their 
locations in the herd, while finding a proximity between a reindeer 
cow and her calf. In the proposed set-up, active RFID ear tags, which 
are fitted to the animals, are utilized as nodes. Such tags normally 
have an accuracy of 3 - 5 meters when determining the location, and 
when used with central nodes (gateways), it is possible to allow a large 
number of tags to communicate simultaneously with a single access 
point without choking the wireless network. The traditional RFID 
technology would have required a larger number of readers, in order 
to determine the location of a single tag, with the same precision as 
the wireless network. For the proposed application, the system needs 
the implementation of a localization algorithm. Various localization 
techniques relying on distance measurements in WSNs (related to 
RSSI magnitude) have been considered and thoroughly discussed 
in this paper. Several existing techniques has been investigated to 
estimate locations of target tags considering range measurements, 
which can be employed in proper computer algorithms to analyze 
the gathered data-base of animal tracking. Among all possibilities, 
RSSI is considered here as the most economic and practical choice 
for the proposed application. Since the accuracy of the estimated 
positions is not the priority, we proposed a more flexible and 
cheaper solution thanks to a distributed algorithm. The implemented 
algorithm is based on local measurements and communications 
through neighboring nodes. In particular, we considered two phases 
including an initialization MLE phase and a refinement phase based 
on a DSA algorithm. The latter enables each sensor node to track its 
own position and those from its neighbors. This leads the process of 
matching a reindeer calf to its mother in a robust way. The advocated

Figure 6.                for Experience 2 before (blue) and after (red) the 
refinement phase performed by the algorithm in Section V-B.
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Figure 7.               for Experience 3 before (blue) and after (red) the 
refinement phase performed by the algorithm in Section V-B.

38
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Testbed Experience 1 Experience 2 Experience 3

Method B-MLE DSA B-MLE DSA B-MLE DSA

MD(m) 1.39 0.77 2.73 1.73 1.85 1.3

NMD 0.28 0.16 0.25 0.16 0.18 0.13

Improvement (%) 44.3 36.7 29.5

Positions improved(%) 76 72 74

Testbed Experience 1 Experience 2 Experience 3

Method B-MLE DSA B-MLE DSA B-MLE DSA

MD(m) 1.35 1.31 2.27 1.64 2.27 1.84

NMD 0.27 0.26 0.22 0.15 0.22 0.18

Improvement(%) 3.8 30.5 19

Positions improved(%) 55 63 68

(1−ρ)% ρ

Table 2. Localization error averaged over the N estimated sensor nodes’ positions for each of the three considered testbeds when using the small data set 
of 10 positions (up) and the big data set of 25 (down).
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method suffers from a few limitations pertaining to the number 
of tags that can be covered using one central node reader and 
coverage of the pen area, where the reindeer herd is gathered for 
identification, which could create further problems pertaining 
to transmission, repeatability and accuracy. The proposed 
method reduces the amount of effort and time in performing the 
identification process and paves the way for the implementation 
of wireless sensor network enabled RFID tags for animal welfare.
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