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Introduction

In current clinical practice, the 3D size, shape and location 
of a tumor is often an important diagnostic reference. However, 
the majority of medical imaging instruments only provide two-
dimensional (2D) images, although a few expensive instruments can 
provide three-dimensional (3D) images by stacking the original 2D 
images, but these 3D images are unprocessed and often cause problems 
in segregating the target from a mix of complex tissues. Therefore, it is 
important to have the skills of segmenting the designated object from 
medical images so it can improve the diagnostic accuracy of doctors, 
or even become a guide of the surgery. In the previous studies, many 
two-dimensional (2D) image segmentation techniques have been 
developed, such as the region growing, zero-crossing [1], region-based 
segmentation [2], active contour model (ACM) [3], and the level set 
method (LSM) [4-6]. However, breast MRI tumor segmentation has 
always been a challenging task because of the low resolution, and the 
tumor tissue is often mixed with a number of other tissues. Among 
older segmentation methods, some use the local characteristics; these 
methods are not stable in the accuracy of segmentation. Some use the 
gradient as a basis for segmentation; these methods are likely to cause 
misjudgments on images with vague edges. In addition, some methods 
are based on intensity; these methods are relatively susceptible to 
noise interference. Nevertheless, there are also some methods—such 
as LSM and multi-spectral detection technology [6]—that do give 
good results for tumor segmentation in breast MRI.

Currently, the segmentation of 3D medical images has become a 
computer-aided diagnostic technology in dire need of development 
[7-8]. Since the technologies of 2D image segmentation and contour 
detection are now relatively mature, so the approach to 3D image 
segmentation in some parts of the literature is to segment the tumor 
in each 2D image slice, and then stack these segmented slices to 
obtain a 3D tumor model [9-11]. Such an approach not only increases 
the operating cost because of the separate processing of each slice, 
it also lacks a reference between the upper and lower slices. For this 
reason, there may be confusion when establishing the 3D model 
as to the imperfect correspondence between slices, which could 
greatly reduce the efficiency and accuracy of the 3D segmentation-
modelreconstruction. In addition, there are some existing 3D image-
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segmentation techniques and methods that split three orthogonal 
2D planes and combine them into a 3D segmentation model [12-14]. 
Since such an approach does not operate directly on the entire 3D 
model, it is not considered strictly to be a complete 3D segmentation 
algorithm.

In order to overcome the problems encountered in the past and 
segment a more accurate 3D breast tumor model to provide physicians 
with a diagnostic reference, this paper proposes a new 3D tumor 
segmentation method, namely, the 3D Modified Active Contour 
Method (3D-MACM). 3D-MACM not only reduces the computation 
time but also operates directly on the entire 3D model which conducts 
the interaction between each pixel and its neighboring points on all 
three axes (X, Y, and Z). To verify experimentally the feasibility of the 
proposed method, this paper uses an actual breast MRI case with tumor 
and several simulated MRI cases for system evaluation. In the course 
of the experiment, the tumor is first segmented and a 3D model of the 
tumor is rendered from the segmentation results using the Marching-
Cubes-Isosurface (MCIS) method. A quantitative evaluation is then 
conducted according to the standard model (delineated by physicians 
for actual breast MRI case), and the effectiveness of the algorithm is 
verified using this quantitative data. Finally, the accuracies and false 
alarm rates of traditional ACM and 2D/3D LSM are compared to 
demonstrate the advantages of 3D-MACM.

This paper is organized as follows. Section 2 will introduce 
2D-ACM and the new approach 3D-MACM proposed in this paper. 
The experimental arrangements and results are described in Section 
3. Finally, conclusions are presented in Section 4.
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Abstract

Medical image segmentation is an important aided technique for medical diagnosis. In the past, 
some researchers have proved effectiveness on two-dimensional (2D) image segmentation; but the 
achievements of three-dimensional (3D) image segmentation are still unsatisfactory and challenging. 
This paper presents a 3D Modified Active Contour Method (3D-MACM) that is aimed at breast tumor 
segmentation in 3D magnetic resonance images (MRI). It acquires an accurate 3D tumor segmented 
model in order to provide physicians with 3D function such as position, volume, shape characteristics, 
distribution, etc. In the development process of proposed method, the traditional 2D technique must first 
evolve into 3D technique and then modify the smoothing method to facilitate the overall operation of the 
stacked MRIs, so it is called 3D modified ACM. To assess the accuracy of 3D-MACM, we have conducted 
experiments on breast MRI and simulated cases and have compared with the traditional active contour 
method and level set method. The results show that not only is the method developed in this paper more 
accurate than traditional methods, it also has an accuracy greater than 99% and a false alarm rate less 
than 0.8%, according to the standard model.
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Methods

Two-dimensional Active Contour Method (2D-ACM)

An initial closed curve (initial contour) must first be defined, 
followed by the definition of a circular shape; and the initial contour 
explains each pixel to form the image height distribution map which 
outside the contour gradually increases and inside the contour 
gradually decreases, as shown in Figure 1.

This divides the entire image space into three parts: one in which 
pixels with -1 ≤ δ ≤ 1 are on the contour line, a second one in which 
pixels with -1 ≤ δ are inside the contour, and a third one in which 
pixels with  δ ≤ 1 are outside the contour, as shown in Figure 2. The 
values of are updated constantly according to the update function. In 
the meantime, the contour also changes and gradually approaches the 
object. Finally, when convergence is achieved, pixels with -1 ≤ δ ≤ 1 
form the final contour of the target object.

Three-dimensional Modified Active Contour Method (3D-MACM)

The development of 3D-MACM is an evolution based on two-
dimensional active contour method (2D-ACM). When the latter is 
applied in 3D medical image segmentation, only the effect between 
pixels on the same slice can be taken into consideration during the 
whole process. This is because each 2D slice has to be processed 
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separately, and those processed 2D matrices are then used to form the 
3D matrix to construct a 3D model; pixels on different slices cannot be 
linked. Unlike 2D-ACM, the 3D-MACM developed in this paper adds 
a third dimension to the algorithm, i.e., the Z-axis. This enables pixels 
on different slices to be associated with each other. The process is first 
to stack the 2D MR image slices to obtain a 3D matrix, and to perform 
calculations in the overall 3D space; and then the effectiveness will be 
predictably much better than that of 2D segmentation techniques. In 
this paper, the proposed 3D-MACM first expands a 2D contour line 
to a 3D contour surface on the basis of the initial contour definition, 
where pixels with -1 ≤ δ ≤ 1 are on the contour surface, pixels with -1 
≤ δ are inside the 3D contour surface, and pixels with δ ≤ 1 are outside 
the 3D contour surface, as shown in Figure 3.

Since the 3D-MACM update equation must take the Z-axis into 
consideration, this paper redefines the update equation, as shown in 
Eq. (1):

where σ and μ represent the weighting factor of the image and 
μ0 is grayscale values of pixel at position (x,y,z); the terms c1 and c2 
represent the averages of the internal and external grayscale values 
of the contour surface, respectively. is an adjustable constant for 
controlling the sharpness of the pulse. The term                   is used to give 
the entire contour surface a smooth appearance; it can be calculated 
from the divergence in three directions of each pixel gradient (∆) on 
the contour surface, as shown in Figure 4.

In 3D-MACM, the consideration of the gradient on the Z-axis of the 
contour surface is needed, so this paper provides a new definition, as 
shown in Eq. (2). xy, yz, and xz represent the gradient quantization 
values on the X-, Y- and Z-axes of the image, respectively. In addition, 
redefining the initial contour will be operated in which pixels with -1 
≤ δ ≤ 1 after using the junction of positive and negative.

Figure 1: An image height distribution map of initial contour for 
2D-ACM.

Figure 2: Initial contour of the the 2D-ACM.

Figure 3: Initial contour surface of the 3D-MACM.
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Three-dimensional Surface Rendering (3DSR)

In the results obtained via the 3D-MACM operation, all the 
pixels with -1 ≤ δ ≤ 1 form the 3D contour matrix, and the process 
of converting this matrix to a 3D surface is referred to as three-
dimensional surface rendering (3DSR). 3DSR approach broadly 
includes two categories: the light projection method [15,16] and the 
iso-surface approximation method [17,18]. Some typical techniques 
contain Volume Rendering (VR) [19,20], Contour-Tracing Iso-
Surface (CTIS) [21], Marching-Cube Iso-Surface (MCIS) [18], and 
etc. In this paper, we use the Marching-Cube Iso-Surface (MCIS) 
method to construct the breast tumor 3D model because of his 
excellent performance. The MCIS is a way to construct an iso-surface 
on an object surface is to treat the small cubes in the 3D space as the 
basic units, and to find the respective iso-surface of each one. When 
a cube has eight vertices and each vertex has two states (marked and 
unmarked), there are 28 = 256 possible distributions of iso-surfaces. 
However, taking into account the rotational symmetry of a cube, there 
are only 15 different cases, as shown in Figure 5.

The corresponding iso-surface can then be generated quickly within 
the small cubes according to a lookup table. The MCIS calculation 
process can be described in more detail as follows.

(1). Read in adjacent two planes (X-Y planes) of the matrix at a time, 
forming a layer and a cube which constituted by four corresponding 
points from the upper and lower planes, as shown in Figure 6.

(2). Process all the cubes in a layer sequentially (extract the isosurface 
of each cube), and then process each layer from bottom to top in the 
object.
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(3). For each cube, the grayscale values of its eight vertices can be 
obtained directly from the 2D planes, and the threshold of the 
isosurface to extract is known (set by the user). If the grayscale value 
of a vertex is greater than the set value, it becomes a marked vertex 
(black), while a vertex with a grayscale value less than the set value 
remains unmarked.

Experimental data and results

Establishment of experimental data and evaluation criteria

The research adopted two kinds of images for the 3D tumor-
segmentation experiment and performance evaluation, including 
simulated MR images and actual breast MR images. There are two 
reasons to use simulated MR images in the primary experiment.

(1) The characteristics of simulated MR images can be accurately 
grasped.
(2) Simulated MR images can provide more objective results of 
segmentation.

For the actual breast MRI case, the imaging sources are from Tri-
Service General Hospital, Taipei, Taiwan. The resolution of each 
image is 512 × 512. The chosen case has 98 image slices with a slice 
spacing of 2mm, and the scope of slices contain the tumor site. Figure 
7 shows partial slices of the actual breast MRI case with breast tumors.

In order to perform systematic quantitative evaluation for the 
actual MRI case, the evaluation criteria first had to be established. For

Figure 4: Three directions of a pixel on the contour surface.

Figure 5: Fifteen types of basic cube iso-surface diagram.

Figure 6: Layer formed by two planes.

Figure 7: Partial slices of an actual breast MRI case with breast tumors.
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slices with the tumor image in actual MRI case, three experts 
delineated the tumor outline. The intersection area was taken as the 
standard contour, and a standard 3D tumor contour was further 
established in combination with the standard contour in each slice. In 
the subsequent experiments, systematic performance evaluation and 
quantitative analysis was conducted based on this standard 3D tumor 
contour.

Simulated MR images are simulated from actual MRIs, and 
the gray-level distribution is obtained from the average sampling 
points of the tissues in actual breast MR images. In order to make 
the simulated image closer to the actual MRI, a variety of simulated 
images separately added the noise with density of 30%, 40%, and 50% 
as well as blurred by using 3 x 3, 5 x 5, and 7 x 7 mask. Partial slices of 
a simulated MRI case with different noise densities and blurring are 
shown in Figure 8.

Systematic evaluation methods

To evaluate the performance of 3D-MACM, this study conducts the 
correct classification rate (CCR), specificity (SP), and false alarm rate 
(FAR) which are the commonly used evaluation indices in a variety of 
medical aided systems. Meanwhile, the performances also compare 
with different existing algorithms. Each evaluation index is calculated 
as follows:
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where N represents the total number of pixels in the three-
dimensional region of interest (3D-ROI), and Nn represents the 
total number of pixels outside the standard 3D tumor contour in the 
3D-ROI. The acronym TPN stands for True Positive Number, which 
represents the number of pixels inside the standard 3D tumor contour 
and also detected as the pixels inside standard 3D tumor contour. The 
acronym FPN stands for False Positive Number, which represents the 
number of pixels outside the standard 3D tumor contour but detected 
as the pixels inside standard 3D tumor contour. The acronym TNN 
stands for True Negative Number, which represents the pixels outside 
the standard tumor contour and also detected as the pixels outside 
standard 3D tumor contour. The acronym FNN stands for False 
Negative Number, which represents the pixels inside the standard 
tumor contour but detected as the pixels outside standard 3D tumor 
contour. The closer CCR and SP are to 100%, the more accurate the 
detection result of the algorithm will be. Finally, FAR is a system error 
indicator, whose percentage should be as low as possible.

Establishment and comparison of 3D tumor-segmentation 
models

In this section, we use traditional ACM, LSM, 3D-LSM and the 
3D-MACM which proposed in this paper to perform 3D tumor 
segmentation on the experimental cases. The resulting 3D tumor 
contour matrix is converted to a 3D surface (3D tumor-segmentation 
model) via the 3DSR process of MCIS in order to observe and compare

Figure 8: Partial slices of three simulated MRI cases with different noise densities and mask blurring.

TNP+TNNCorrect Classification Rate (CCR)=
N

TNNSpecificity(sp)=
TNN+FPN

a

FPNFalse Alarm Rate (FAR)=
N

(3)

(4)

(5)
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Figure 9: 3D tumor-segmentation results of the actual breast MRI case obtained by using different 
algorithms: (a) standard; (b) ACM; (c) LSM; (d) 3D-LSM; (e) 3D-MACM.

Figure 10: 3D tumor-segmentation results of simulated case with 30% noise density and 3×3 blurring mask 
obtained by using different algorithms: (a) standard; (b) ACM; (c) LSM; (d) 3D-LSM; (e) 3D-MACM.
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the results. The actual MRI case has a tissue type of relatively more 
glandular, and both the breast and tumor sizes are relatively small. The 
segmentation results of this case are shown in Figure 9. In addition, the 
segmentation results of simulated tumor cases are shown in Figure 10-
12. As Figure 9 and Figure 10-12 have shown, figure (a) is the standard 
3D tumor model; figures (b–e) are the 3D tumor-segmentation
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models obtained by ACM, LSM, 3D-LSM and 3D-MACM, 
respectively. The following conclusions can be drawn from these 3D 
tumor-segmentation results. The results in Figures 9 and Figure 10-
12 show that the 3D tumor-segmentation model generated by the 
3D-MACM proposed in this paper is the one that is most consistent 
with the standard 3D tumor model. When 2D segmentation 

Figure 11: 3D tumor-segmentation results of simulated case with 40% noise density and 5×5 blurring mask 
obtained by using different algorithms: (a) standard; (b) ACM; (c) LSM; (d) 3D-LSM; (e) 3D-MACM.

Figure 12: 3D tumor-segmentation results of simulated case with 50% noise density and 7×7 blurring mask 
obtained by using different algorithms: (a) standard; (b) ACM; (c) LSM; (d) 3D-LSM; (e) 3D-MACM.
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techniques evolve into 3D techniques, the application of 3D 
segmentation gives good performance because the upper and lower 
slices are connected.

Quantitative Evaluation and Comparison

This section performs quantitative analysis based on the standard 
3D tumor contours (Figures 9(a) and 10(a)-12(a)) for the 3D tumor-
segmentation results of each case, and compares the quantitative 
results of 3D-MACM with those of ACM, LSM and 3D-LSM. Table 
1 shows the TPN, FPN, TNN, FNN, Np, Nn and N numbers of the 
different algorithms in each case, where Np is the total number 
of pixels inside the standard tumor contour and hence represents 
the actual size of the tumor. It can be seen from the data in Table 1 
that in all cases the total amount of correctly segmented pixels with 
3D-MACM is the highest, and that its number of wrongly segmented 
pixels is the lowest. It explains that TPN and TNN represent the 
numbers of pixels segmented correctly, while FPN and FNN are the 
numbers of pixels wrongly segmented. The three kinds of evaluation 
indices used commonly in medical aided systems (CCR, SP and 
FAR) can be deduced from the data in Table 1 and the calculations 
of Eq. (3–5), as shown in Table 2. From that table, it can be seen that 
LSM has a better performance in 3D tumor segmentation than that 
of ACM. Evolving from LSM to 3D (3D-LSM), can improve CCR 
and SP effectively, as well as reducing the false alarm rate (FAR). 
However, 3D-MACM gives the highest CCR and SP, and the lowest 
FAR. This quantified performance is consistent with the observation 
results of the 3D tumor-segmentation models in the previous section. 
This proves again that the application of 3D-MACM in 3D tumor 
segmentation can eliminate background noise effectively, so that the 
segmented contour is closer to the actual tumor margin.

Conclusions

3D medical image segmentation is used to segment the target (a 
lesion or an organ) in 3D medical images. Through this process, 3D 
target information is obtained; hence, this technology is an important 
aided tool for medical diagnosis. This paper presents an innovative 3D 
medical image-segmentation method called the 3D Modified Active 
Contour Method (3D-MACM), which can segment the target lesions 
precisely from 3D medical images. Most of the 3D segmentation 
algorithms will be affected largely by errors and/or noise. Although 
many 2D segmentation methods have proved successful in the 
past, the 3D image segmentation obtained by segmenting 2D slices 
individually and then stacking them has not been satisfactory due to 
the lack of connectivity between the upper and lower slices. Therefore, 
3D-MACM combines the information of the upper and lower 
segments, and then recalculates with the simple initial contour which 
not only brings the segmented contour closer to the actual outline 
of the tumor margin, but also accelerates convergence and eliminates 
background noise.

In order to validate our proposed method, this study used actual 
breast MRI and simulated cases with different noise and blurred masks 
for evaluation. In the experiment, 3D models of the tumors were 
constructed using the segmentation results through MCIS in order 
to facilitate visual observation and comparison. This was followed by 
a quantitative evaluation to verify the effectiveness of the algorithm 
with quantitative data. Finally, the accuracies and error rates of 
traditional ACM, and 2D/3D LSM were compared. The experimental 
results show that the method developed in this paper (3D-MACM) 
not only has more accurate contour and less noise than the traditional
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case type Methods

ACM LSM 3D-LSM 3D-MACM

Actual breast 
MRI

TPN 1305 2619 2559 2468

FPN 68466 4578 2947 896

TNN 93488 157376 159007 161058

FNN 1479 165 225 316

Np 2784 2784 2784 2784

N 164738 164738 164738 164738

Simulated case 
(30% noise 
density with 
3×3 mask 
blurring)

TPN 6249 6420 6420 6140

FPN 11737 3860 2647 460

TNN 106757 114634 115847 118034

FNN 257 86 86 366

Np 6506 6506 6506 6506

Nn 118494 118494 118494 118494

N 125000 125000 125000 125000

Simulated case 
(40% noise 
density with 
5×5 mask 
blurring)

TPN 6815 6912 6867 6672

FPN 14803 2617 1440 778

TNN 103147 115333 116510 117172

FNN 235 138 183 378

Np 7050 7050 7050 7050

Nn 117950 117950 117950 117950

N 125000 125000 125000 125000

Simulated case 
(50% noise 
density with 
7×7 mask 
blurring)

TPN 5136 5047 4526 4945

FPN 21274 2809 710 874

TNN 98417 116882 118981 118817

FNN 173 262 783 364

Np 5309 5309 5309 5309

Nn 119691 119691 119691 119691

N 125000 125000 125000 125000
Table 1: TPN, FPN, TNN, FNN, Np, Nn and N numbers (in pixels) of 
the different algorithms in each case.

case type Methods

ACM LSM 3D-LSM 3D-MACM

Actual breast 
MRI

CCR 57.54 97.12 98.07 99.26

SP 57.73 97.17 98.18 99.45

FAR 42.27 2.83 1.82 0.75

Simulated case 
(30% noise 
density with 3×3 
mask blurring)

CCR 90.4 96.84 97.81 99.34

SP 90.09 96.74 97.77 99.64

FAR 9.91 3.26 2.23 0.39

Simulated case 
(40% noise 
density with 5×5 
mask blurring)

CCR 87.97 97.8 98.7 99.08

SP 87.45 97.78 98.78 99.34

FAR 12.55 2.22 1.22 0.66

Simulated case 
(50% noise 
density with 7×7 
mask blurring)

CCR 82.84 97.54 98.81 99.01

SP 82.23 97.65 99.41 99.27

FAR 17.77 2.35 0.59 0.73
Table 2: Accuracy, specificity, and false alarm rate (%) of the different 
algorithms in each case.
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methods, but it also has the highest accuracy and lowest false alarm 
rate in comparison with the standard model.
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