
Abstract

Robot kinematics modeling has been one of the main research issues in robotics research. For real-
time control of robotic manipulators with high degree of freedom, a computationally efficient solution 
to the inverse kinematics modeling is required. In this paper, an SOM-Like inverse kinematics modeling 
methodis proposed. The principal idea behind the proposed modeling method is the use of a first-order 
Taylor series expansion to build the inverse kinematics model from a set of training data.  The work space 
of a robot arm is discretized into a cubic lattice consisting of Nx×Ny×Nz sampling points. Each sampling 
point corresponds to a reciprocal zone and is assigned to one neural node, storing four different data 
items(e.g., coordinates position vector, template position vector,the joint angle vector, and the Jacobian 
matrix) about the first-order Taylor series expansionof the inverse kinematics function at that sampling 
point. The proposed inverse kinematics modeling method was tested on a 3-D printed robot arm with 
5 degrees of freedom (DOF). The performance of the proposed method was tested on two simulated 
examples. The average approximation error could be decreased to 0.283 mm in the workspace, 200.0 
mm×200.0 mm×72.0 mm and 0.25 mm in the workspace, 200.0 mm×200.0 mm.
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Introduction

Robot kinematics modeling has been one of the main research issues 
in robotics research. It can be divided into forward kinematics and 
inverse kinematics. Forward kinematics refers to the calculation of the 
position and orientation of an end effector in terms of the joint angles,  
                   where                                 represents the Cartesian position of 
the end effector and                                                                       represents the joint angles where  
we assume there are n joints in the joint configuration. Inverse 
kinematics refers to find the transformation               from the  po- 
sition of the end effector in the external Cartesian position space to 
the joint angles in the internal joint space. While there is always a 
straightforward solution to forward kinematics, the solution to inverse 
kinematics is usually more difficult, complex, and computationally 
expensive. For real-time control of robotic manipulators with high 
degree of freedom, a computationally efficient solution to the inverse 
kinematics modeling is one of the main requirements.

Approaches to the inverse kinematics problem can be roughly 
categorized into four classes: the analytical approach (e.g., [1]-
[5]), the numerical approach (e.g., [6]-[11]), the computational 
intelligence-based approach (e.g., [12]-[20]), and the lookup table-
based approach (e.g., [21]-[23]). While the analytical approach solves 
the joint variables analytically according to given configuration data 
to provide closed form solutions, the numerical method provides 
a numerical solution (e.g., the use of the Jacobian matrix of the 
forward kinematics function,             to approximate the optimal 
joint angles [24]. Real-time applications usually prefer closed form 
solutions than numerical solutions because the latter one either 
requires heavy computations or fails to converge when a singularity 
exists. The computational intelligence-based approach provides an 
alternative solution to the inverse kinematics problem [12]-[20].
Many co1mputational intelligence-based methods were based on the 
use of the self-organizing feature map (SOM) [12]-[14], [16]-[20]. 
Recently, the lookup table-based approach has been introduced to 
solve the inverse kinematics problem due to its simplicity [21]-[23]. 
Basically, the lookup table-based approach consists of two phases: 
the phase of the off-line construction of the lookup table and the 
on-line interpolation phase. The lookup table-based approach may 
encounter the following problems. First of all, the amount of memory
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required for constructing an effective table may increase as the 
number of joints and the resolution of the table increase. In addition, 
a further approximation procedure may be adopted to search for a 
better solution once an initial table entry has been located. Without 
any doubt, each one of the aforementioned four approaches has its 
advantages and limitations.

The goal of this paper is to endow a 3-D printed humanoid robot 
arm with the ability of positioning its fingertip to a target position 
in real time. To achieve this goal, the robot system has to seek a 
high efficiency solution to inverse kinematics modeling. In this 
paper we propose an SOM-like approach to solving the inverse 
kinematics problem. The proposed approach integrates the SOM-
based approach and the lookup table-based approach.Our approach 
is the use of a Taylor series expansion to build the transformati-
on                   from the position of the end effector in the external  
Cartesian position space to the joint angles in the internal joint space 
from a set of training data. The principal idea behind the proposed 
modeling method is to discretize the work space of a robot arm into a 
cubic lattice consisting of Nx×Ny×Nz sampling points. Each sampling 
point corresponds to a reciprocal zone and is assigned to one neural 
node.Each neural node storesfour weight vectors or data items: the 
coordinates position weight vector    , the template position weight 
vector     , the joint angle weight vector     , and the Jacobian matrix 
Wj

J. All these four data terms can be quickly learned by the proposed 
modeling method from a collected training data set. The training data 
set can be constructed by either the uniformly discretization scheme 
or the real-life data generation scheme. The computations of the joint 
angles corresponding to a target position in the work space involve the 
following two steps. First of all, we search the reciprocal zone which is
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closest to the target position. Secondly, the joint angles are 
approximated by he first-order Taylor series expansion of the transfor
mation                         via the target position vector    target , the joint angle  
vector        , and the Jacobian matrix Wj

J within the reciprocal zone.

The performance of the proposed SOM-like inverse kinematics 
modeling method was tested on a 3-D printed robot arm with 5 
degrees of freedom (DOF). Two simulated examples were designed to 
test whether the robot arm could successfully position its fingertip to 
target positions in the work space.

This paper is organized as follows. Following this introduction is a 
brief review of the Taylor series expansion and the SOM algorithm. 
Section III explains the detailed descriptions of the proposed SOM-
like inverse kinematics modeling method. Simulation results are 
given in Section IV. The final section contains the discussions and 
conclusions.

Brief Review of the Taylor Series Expansion and the SOM 
Algorithm

The Taylor Series Expansion

In mathematics, a vector-valued function can be approximatedvia 
the first-order Taylor expansion as follows:

 
                                                                                                                   (1)

where     is a data point,     is a template point,                                      is 
a vector-valued function, and           is the Jacobian matrix at the tem- 
plate point      The Jacobian matrix           is the matrix of the all first 
order partial derivatives of the vector-valued function               as follows:

                                                                                                                 (2)

An immediate problem needed to be solved is the estimation of the 
Jacobian matrix at the point,     . There are two methods to estimate the 
Jacobian matrix from the N+1 data pairs. One popular method is the 
use of the Moore-Penrose generalized Inverse operator. Assume we  
have N+1 data pairs,                                                  .       Let us rewrite 
Eq. (1) as follows:

                                                                                                                (3)

where

                                                                                                                (4)

Since we have N+1 data pairs,                                                                      , 

                     Eq. (3) can be expanded to be as follows:

p

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                                                                                                                    (5)

                                                                                                                    (6)

The solution of the matrix            is computed as follows:

where                       is the Moore-Penrose generalized inverse of the  
matrix                      .

The SOM

The training algorithm proposed by Kohonen for forming a self-
organizing feature map (SOM) is summarized as follows [25]-[26]:

Step 1. Initialization: Consider the network on a rectangular grid 
with M rows and N columns. Each neuron in the neural network is 
associated with an n-dimensional weight vector      , Randomly choose 
values for the initial weight vectors               . 

Step 2. Winner Finding: Present an input pattern            to the network 
and search for the winning neuron. The winning neuron       at time k 
is found by using the minimum-distance Euclidean criterion:

                                                                                                                     (8)

where                                                                                         represents the kth  
input pattern and   indicates the Euclidean norm.

Step 3. Weight Updating: Adjust the weights of the winner and its 
neighbors using the following updating rule:

where            is a positive constant and                     is the topological  
neighborhood function of the winner neuron       at time k.

Step 4. Iterating: Go to step 2 until some pre-specified termination 
criterion is satisfied.

The Proposed SOM-Like Approach to Inverse Kinematics 
Modeling

The goal of the proposed SOM-like approach to inverse kinematics 
modeling is to derive an corresponding joint angles,   from any 
fingertip position,     . It involves two phases: (1) the off-line training 
phase and (2) the real-time manipulating phase. While the off-line 
training phase is to derive the inverse kinematics model for each 
sampling point over the discretized work space of the robot arm from 
a collected training data set, the real-time manipulating phase is to 
compute the corresponding angles for a particular fingertip position 
based on the trained inverse kinematics model in real-time.
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The off-line training phase

The proposed off-line training phase integrates the merits of the 
SOM-based approach and the lookup table-based approach.It fully 
utilizes the topology-preserving property of the SOM algorithm to 
generalize the modeling capability from collected data to unknown 
data space. In addition, similar to the table-based approach, it is able 
to calculate the necessary information to derive the inverse kinematics 
with no need of a complicated learning procedure. The principal idea 
behind the proposed modeling method is to discretize the workspace 
of a robot arm into a cubic lattice consisting of Nx×Ny×Nz sampling 
points. Each sampling point corresponds to a non-overlapping 
reciprocal zone in the workspace. For each sampling point, we will  
stores four weight vectors or data terms (i.e. 

                      ) in order to quickly derive corresponding joint angles      .  
for any fingertip position      located inside the corresponding reciprocal 
zone of the sampling point via the first-order` Taylor expansion. All 
these four data terms can be quickly learned by the proposed off-line 
training phase.

The off-linetraining phase is describedas follows:

Step 1: Workspace Specification- First of all, we need to specify 
where the workspace of the robot arm is. Assume that the workspace 
of the robot arm is located in the region defined by [mx,Mx ]×[my,My 
]×[mz,Mz ]where the parameters, mx,Mx, my,My,mz, and Mz are the 
lower bounds and upper bounds for the workspace with respective to 
the axes, X, Y, and Z, respectively.

Step 2: Lattice Determination- Discretize the work space into an 
equidistant cubic lattice consisting of Nx×Ny×Nz template points.
The more template points the workspace has, the smaller the 
approximation error the training phase will achieve. Accordingly, we 
set the SOM network structure to be a 3-dimensional lattice structure 
with the network size,Nx×Ny×Nz. Each neural node isthenrespectively 
assigned to its correspondingtemplate point. Therefore, the reciprocal  

zone of each neural nodeis                                                               .  

Each neural node then needs to store the its corresponding fourweight 
vectors: the coordinates vector of the sampling point wc     ,          . 
, the template position vector                  the joint angle vector                      , and 
the Jacobian matrix W(k,l,m). These four weight vectors will be computed 
in the following steps from a set of training data.

Step 3: Collecting training data- Assume the forward kinematics 
model of the robot arm has been developed via some kind of forward 
kinematics modeling method. Based on the generated forward 
kinematics model, we can easily derive the position of the fingertip of 
the robot arm from a given combination of joint angles. The training 
data can be constructed by either the uniformly discretization 
scheme or the real-life data generation scheme. If we have generated 
the forward kinematics model then we suggest to use the uniformly 
discretization scheme. Let RAi and ∆θi represent the physical range 
limit and the sampling step for the ith joint, respectively. Therefore,  

we will collect                                                                                   training  

data,                                                            , where Nact represent the 

number of joint angles. The more training data we collect, the higher

the performance of our method will achieve. The prices paid for the 
high performance are: (1) the need of larger memory for storing the 
corresponding four weight vectors and (2) the more training time.

Step 4: Training of the SOM network- It involves the following four 
sub-steps. 
(4.1) Initialization: For each neural node, its corresponding 
fourweight vectors are initialized as follows:

(4.2) Winner Finding:Present an input pattern    to the network 
and search for the winning neuron. The winning neuron(k*, l*, m*)
corresponding to the input pattern       is found by using the minimum-
distance Euclidean criterion:

(4.3) Weight Updating:Adjust the weights of the winning neuron 
using the following updating rule:

A flag is attached to each neural node to indicate whether the 
node has already won one competition. If the node has won for at 
least one competition then the value of its flag will be set to be one; 
otherwise, zero. After all Ns training data have been presented to 
the SOM network, the neural nodes with non-zero flag value are 
regarded as “template nodes”. On the contrary, neural nodes with a 
zero flag value are claimed to be “novice nodes”. All novice nodes have 
to enter the next sub-step to update their weight vectors. One thing 
should be pointed out is that several neural nodes may have won the 
competitions for more than one time. If this case happens then the 
training data with the smallest distance to the coordinates position 
vector,           is adopted to update the particular node’s template 
position vector via (15).

(4.4) Updating the empty nodes’ weights: In this sub-step, we fully 
utilize the topology-preserving property of the SOM. We assume 
that neural nodes have similar responses as their neighboring nodes. 
Based on this assumption, the weight vectors of a novice node can 
be computed from its neighboring nodes. For each novice node 
(k, l, m), we will find how many neighbors of the novice node are 
already template nodes. We only consider its 3×3×3 neighboring 
nodes. The novice nodes are sorted in a decreasing order according 
to the numbers of their neighboring nodes which are template nodes. 
According to the sorted order, the joint angle vector                 .of a novice 
node is updated as follows:
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where NS(k,l,m) represents the set of template nodes within the 3×3×3 
region. After the updating change, a novice node then becomes a 
template node. This process is repeated until all novice nodes are 
updated and become template nodes.

Step 5: Computationof Jacobian matrix- According to Eq. (1), if the 
template point    is very close to the data point    then the joint angles     . 
corresponding to a particular location     can be linearly approximated 
as follows:

Where  is a template point with the Jacobian matrix J( ). An 
immediate problem is how to compute the Jacobian matrix for each 
template point. After Step 4, the neural node located at the sampling 
point      has been assigned a template position weight vector,                
,                and a joint angle weight vector,             . Assume each node  
has Nnbneighboring nodes. For example, nodes located at the eight 
corners have only 3 neighboring node but most of the nodes inside 
the lattice have 26 neighboring nodes. Then we can construct a set 
of Nnb data pairs for the neural nodelocated at         to estimate the 
corresponding Jacobian matrix via (7). To be concise and clear, we 
denote the Nnb data pairs for h = 1,…, Nnb as follows:

These Nnb data pairs should meet the following conditions:

 

where the Jacobian matrix J is a Nact ×3 matrix since there are Nact 
joints and the workspace is a 3-dimensional space. Via (7) the Jacobian 
matrix can be computed as follows:

where

The real-time manipulating phase

After the off-line training procedure, an inverse kinematics model 
has been approximated via a trained SOM network with Nx×Ny×Nz 
lattice structure. Each neural node stores the necessary information 
(e.g., the template position weight vector       the joint angle
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weight vector       , and the Jacobian matrix weight vector      . 
within the reciprocal zone) for the inference of the first-order Taylor 
expansion. The trained inverse kinematics model can be used to 
predict a set of appropriate joint angles         given a special targeted 
position vector            .

Results and Discussion

Step 1: Initialization: Set the iteration parameter k=0 and set the 
initial real position vector	  to be the targeted position vector,        . 
(         =          ).

Step 2: Winner finding: Present the present positionx      to the  
network and search for the winning neuron. The winning neuron               
(k*, l*, m*) at time k is found by using the minimum-distance Euclidean 
criterion:

We search the sampling point of which reciprocal zone is the closest 
to the present real position vector      . If k> 0, then                    , 
which will be calculated at the next step.

Step 3: Calculating the joint angles: The joint angles are approximated 
by he first-order Taylor series expansion via the joint angle vector                    
                  , and the Jacobian matrix                   :

Where                                        and 

Step 4: Actuating the joint angles: Let the robot arm move to the 
new real position,                   ,  according to the joint angles, θ(k+1),  
computed by the previous step.

Step 5: Termination criteria: If the new real position is close enough 
to the target position (e.g., the approximation error between the target 
position and the final real position                                                       where ϵ is  
a pre-specified threshold) then we terminate the procedure; otherwise, 
we set k = k + 1 and go to step 2 until some pre-specified iteration 
number is reached.

Simulation Results

To test the performance of the proposed SOM-Like inverse 
kinematics modeling method, humanoid robots arm with 5 degrees 
of freedom was our test platform. The design of the robot arm was 
from the InMoov project [27]. The InMoov was the first open source 
3D printed life-size robot. Based on the open source and a 3D printer, 
we implemented a humanoid robot arm with 5 degrees of freedom 
as shown in Figure 1. The Denavit-Hartenberg (DH) method is the 
most common method to construct a forward kinematics for a robot 
platform based on four parameters (e.g., the link length, link twist, 
link offset or distance, and joint angle) [28]. A coordinate frame is 
then attached to each joint to determine the DH parameters. Figure 2 
shows the coordinate frame assignment for the robot arm.

Based on the forward kinematics, 20,800 training data points and 
9,072 testing data points were generated, respectively. Figure 3 shows 
the workspace of these data points. The physical boundaries of these 
data points and the way for generating the data points are tabulated in 
Table 1. We then used five different network sizes to discuss whether 
the network size would influence the approximation performance. 
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Table 2 tabulates the average approximation error, the maximum 
approximation error, and the computational time. The simulation was 
done on a PC with 4.0 GB memory, Intel Core i7-2600 CPU @ 3.40 
GHz, and the operating system Windows 7. Two observations can 
be concluded. First of all, the larger the network size is the smaller 
the average approximation error is reached. Secondly, the larger 
the network size is the longer the computational time is required. 
We then took a tradeoff between the approximation error and the 
computational efficiency to choose an appropriate network size for 
the following two simulated examples.

After the inverse kinematics model of the robot arm has been 
constructed, two simulated examples were designed to further test the 
performance of the proposed SOM-Like inverse kinematics modeling 
method.

Example one: Tracking a Circular Helix

The first simulation was designed to track the circular helix defined 
as:

The circular helix was sampled for every ∆θ=1° and there were 
total 720 sampling points. Figure 4 shows the circular helix tracked 
in the workspace, 200.0 mm×200.0 mm×72.0 mm, with an average 
error 5.73 mm if the maximum iteration number is only 1. To further 
decrease the approximation error, the termination criterion parameter 
ϵ was set to be 0.5 mm so that the real-time manipulating phase took 
about 0.0306 milliseconds to repeat the iterative procedure for 200 
iterations. Finally, the average approximation error decreased to be 
0.283 mm.

Example two: Writing a letter “B”

The second simulation was designed to write a letter “B” as follows: 

Line 1: x = -207.7mm, z = 638.8mm, -493.3mm ≤ y ≤ -293.3mm          

Ellipse 1:                                                                 90≤θ≤-90

Figure 1: The humanoid robot arm with 5 degrees of freedom used as 
the test platform.

Figure 3: The workspace of the training data and the testing data.

Figure 2: The coordinate frame assignment for the robot arm.

Joints Training data Testing data

Physical limits ∆θ Physical limits ∆θ

wrist 0°~ 90° 10° 5°~ 85° 10°

bicep 0°~ 60° 5° 25°~ 57.5° 5°

rotate -70°~ 0° 10° -65°~ 5° 10°

shoulder 30°~ 60° 10° 35°~ 55° 10°

shoulder blade 0°~ 20° 5° 2.5°~17.5° 5°

Table 1: The physical boundaries of the robot arm.

Data Set Network 
size

Average 
Error(mm)

Maximum 
Error (mm)

Computational 
Time (Sec.)

Training
Data
Set

5×5×5 36.15258494 119.3132718 12.3940467

10×10×10 12.57448587 59.03169383 13.8339731

15×15×15 7.013908311 70.72144217 18.9198033

20×20×20 4.965376925 51.22875539 33.0356172

20×30×15 4.957974223 60.27973511 53.5397344

Testing
Data
Set

5×5×5 30.56174454 121.1298817 12.3965267

10×10×10 10.04231373 40.75206502 12.7682083

15×15×15 5.993293332 46.21338893 17.3399506

20×20×20 5.024934603 48.1309779 36.6631104

20×30×15 4.91614231 49.37489347 58.9459323
Table 2: The approximation performance of the proposed SOM-Like 
inverse kinematics modeling method with five different network sizes.
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387.4 100.0sin sin mm
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Ellipse 2:                                                                         90≤θ≤-90 

The ellipses were sampled for every ∆θ=1° and there were total 360 
sampling points. The line was sampled for every 1 mm and there were 
200 samples. Figure 5 shows the letter “B” tracked in the workspace, 
200.0 mm×200.0 mm, with an average error 6.58 mm if the maximum 
iteration number is only 1. To further decrease the approximation 
error, the termination criterion parameter ϵ was set to be 0.5 mm so 
that the real-time manipulating phase took about 0.0175milliseconds 
to repeat the iterative procedure. Finally, the average approximation 
error decreased to be 0.247 mm.
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Discussions and Conclusions

This paper introduces an SOM-Like inverse kinematics modeling 
method. The proposed approach integrates the merits of the lookup 
table-based approach and the SOM-based approach. Similar to the 
lookup table-based approach [23], our method also adopts a regular 
grid structure to store the necessary information about the inverse 
kinematics. However, in our method, the regular grid structure is 
created over the Cartesian position space but it is created over the 
joint space in the lookup table-based approach. Similar to the SOM-
based approach [12-14], [16-20], the topology-preserving property of 
the SOM is fully utilized in our method to estimate the weight vectors 
of the empty neurons. The major differences between our proposed 
method and the work on the use of the self-organizing feature map 
(SOM) [12-14], [16-20], are as follows. While those methods will 
update the winning neuron and its neighboring neurons via the 
updating rule similar to (10), our method just updates the winning 
neuron’s template position weight vectors but its neighboring neurons 
are not updated simultaneously. The basic idea behind our method 
is that once a neuron finds its appropriate template position weight 
vectors, it should not be updated again and again by a rule similar 
to (9); otherwise, the right template position weight vectors will be 
continuously changed and become wrong at the end of the training 
procedure. In addition, the methods for estimating the Jacobian 
matrices are very different. For example, they used the Widrow-Hoff 
type rule to estimate the Jacobian matrix for each neuron [13] but we 
use the Moore-Penrose generalized inverse method as given in (21)-
(23). 

	
The proposed SOM-Like inverse kinematics modeling method 

was tested ona humanoid robot arm with 5 degrees of freedom. 
Simulation results have shown that the proposed method could reach 
the average approximation error with 0.25 mm and track a continuous 
trajectory. Several observations can be concluded. First of all, the 
larger the network size, the smaller the average approximation error. 
However, a larger network size will require more computational time. 
Therefore, we have to take a tradeoff between the approximation error 
and the computational efficiency to choose an appropriate network 
size. Secondly, if we allow the real-time manipulating phase to iterate 
more times, then the approximation errors can be greatly decreased.
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