
Abstract

Robot kinematics modeling has been one of the main research issues in robotics research. For real-
time control of robotic manipulators with high degree of freedom, a computationally efficient solution
to the inverse kinematics modeling is required. In this paper, an SOM-Like inverse kinematics modeling
methodis proposed. The principal idea behind the proposed modeling method is the use of a first-order
Taylor series expansion to build the inverse kinematics model from a set of training data. The work space
of a robot arm is discretized into a cubic lattice consisting of Nx×Ny×Nz sampling points. Each sampling
point corresponds to a reciprocal zone and is assigned to one neural node, storing four different data
items(e.g., coordinates position vector, template position vector,the joint angle vector, and the Jacobian
matrix) about the first-order Taylor series expansionof the inverse kinematics function at that sampling
point. The proposed inverse kinematics modeling method was tested on a 3-D printed robot arm with
5 degrees of freedom (DOF). The performance of the proposed method was tested on two simulated
examples. The average approximation error could be decreased to 0.283 mm in the workspace, 200.0
mm×200.0 mm×72.0 mm and 0.25 mm in the workspace, 200.0 mm×200.0 mm.

An SOM-Like Approach to Inverse Kinematics Modeling

Publication History:

Received: January 14, 2017
Accepted: February 16, 2017
Published: February 18, 2017

Keywords:

Robot kinematics, Inverse
kinematics, Jacobian matrix, Taylor
expansion, SOM

Review Article Open Access

Introduction

Robot kinematics modeling has been one of the main research issues
in robotics research. It can be divided into forward kinematics and
inverse kinematics. Forward kinematics refers to the calculation of the
position and orientation of an end effector in terms of the joint angles,
 where represents the Cartesian position of
the end effector and represents the joint angles where
we assume there are n joints in the joint configuration. Inverse
kinematics refers to find the transformation from the po-
sition of the end effector in the external Cartesian position space to
the joint angles in the internal joint space. While there is always a
straightforward solution to forward kinematics, the solution to inverse
kinematics is usually more difficult, complex, and computationally
expensive. For real-time control of robotic manipulators with high
degree of freedom, a computationally efficient solution to the inverse
kinematics modeling is one of the main requirements.

Approaches to the inverse kinematics problem can be roughly
categorized into four classes: the analytical approach (e.g., [1]-
[5]), the numerical approach (e.g., [6]-[11]), the computational
intelligence-based approach (e.g., [12]-[20]), and the lookup table-
based approach (e.g., [21]-[23]). While the analytical approach solves
the joint variables analytically according to given configuration data
to provide closed form solutions, the numerical method provides
a numerical solution (e.g., the use of the Jacobian matrix of the
forward kinematics function, to approximate the optimal
joint angles [24]. Real-time applications usually prefer closed form
solutions than numerical solutions because the latter one either
requires heavy computations or fails to converge when a singularity
exists. The computational intelligence-based approach provides an
alternative solution to the inverse kinematics problem [12]-[20].
Many co1mputational intelligence-based methods were based on the
use of the self-organizing feature map (SOM) [12]-[14], [16]-[20].
Recently, the lookup table-based approach has been introduced to
solve the inverse kinematics problem due to its simplicity [21]-[23].
Basically, the lookup table-based approach consists of two phases:
the phase of the off-line construction of the lookup table and the
on-line interpolation phase. The lookup table-based approach may
encounter the following problems. First of all, the amount of memory

*Corresponding Author: Prof. Mu-Chun Su, Department of Computes Science
and Information Engineering, National Central University, Taiwan; E-mail:
muchun@csie.ncu.edu.tw

Citation: Su MC, Hsueh CC (2017) An SOM-Like Approach to Inverse Kinematics
Modeling. Int J Comput Softw Eng 2: 112. doi: https://doi.org/10.15344/2456-
4451/2017/112

Copyright: © 2017 Su et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

required for constructing an effective table may increase as the
number of joints and the resolution of the table increase. In addition,
a further approximation procedure may be adopted to search for a
better solution once an initial table entry has been located. Without
any doubt, each one of the aforementioned four approaches has its
advantages and limitations.

The goal of this paper is to endow a 3-D printed humanoid robot
arm with the ability of positioning its fingertip to a target position
in real time. To achieve this goal, the robot system has to seek a
high efficiency solution to inverse kinematics modeling. In this
paper we propose an SOM-like approach to solving the inverse
kinematics problem. The proposed approach integrates the SOM-
based approach and the lookup table-based approach.Our approach
is the use of a Taylor series expansion to build the transformati-
on from the position of the end effector in the external
Cartesian position space to the joint angles in the internal joint space
from a set of training data. The principal idea behind the proposed
modeling method is to discretize the work space of a robot arm into a
cubic lattice consisting of Nx×Ny×Nz sampling points. Each sampling
point corresponds to a reciprocal zone and is assigned to one neural
node.Each neural node storesfour weight vectors or data items: the
coordinates position weight vector , the template position weight
vector , the joint angle weight vector , and the Jacobian matrix
Wj

J. All these four data terms can be quickly learned by the proposed
modeling method from a collected training data set. The training data
set can be constructed by either the uniformly discretization scheme
or the real-life data generation scheme. The computations of the joint
angles corresponding to a target position in the work space involve the
following two steps. First of all, we search the reciprocal zone which is

International Journal of
Computer & Software Engineering

Mu-Chun Su* and Chung-Cheng Hsueh
Department of Computes Science and Information Engineering, National Central University, Taiwan

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 1. 2017. 112

 Su et al., Int J Comput Softw Eng 2017, 2: 112
 https://doi.org/10.15344/2456-4451/2017/112

()x f θ=
 

()1 2 3, , Tx x x x=


1 2(, ,...,)n tθ θ θ θ=


1()f xθ −=
 

()x f θ=
 

1()f xθ −=
 

c
jw



t
jw



jw
θ

https://doi.org/10.15344/2456-4451/2017/112
https://doi.org/10.15344/2456-4451/2017/112
https://doi.org/10.15344/2456-4451/2017/112

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 1. 2017. 112

closest to the target position. Secondly, the joint angles are
approximated by he first-order Taylor series expansion of the transfor
mation via the target position vector target , the joint angle
vector , and the Jacobian matrix Wj

J within the reciprocal zone.

The performance of the proposed SOM-like inverse kinematics
modeling method was tested on a 3-D printed robot arm with 5
degrees of freedom (DOF). Two simulated examples were designed to
test whether the robot arm could successfully position its fingertip to
target positions in the work space.

This paper is organized as follows. Following this introduction is a
brief review of the Taylor series expansion and the SOM algorithm.
Section III explains the detailed descriptions of the proposed SOM-
like inverse kinematics modeling method. Simulation results are
given in Section IV. The final section contains the discussions and
conclusions.

Brief Review of the Taylor Series Expansion and the SOM
Algorithm

The Taylor Series Expansion

In mathematics, a vector-valued function can be approximatedvia
the first-order Taylor expansion as follows:

 (1)

where is a data point, is a template point, is
a vector-valued function, and is the Jacobian matrix at the tem-
plate point The Jacobian matrix is the matrix of the all first
order partial derivatives of the vector-valued function as follows:

 (2)

An immediate problem needed to be solved is the estimation of the
Jacobian matrix at the point, . There are two methods to estimate the
Jacobian matrix from the N+1 data pairs. One popular method is the
use of the Moore-Penrose generalized Inverse operator. Assume we
have N+1 data pairs, . Let us rewrite
Eq. (1) as follows:

 (3)

where

 (4)

Since we have N+1 data pairs, ,

 Eq. (3) can be expanded to be as follows:

p


Citation: Su MC, Hsueh CC (2017) An SOM-Like Approach to Inverse Kinematics Modeling. Int J Comput Softw Eng 2: 112. doi: https://doi.org/10.15344/2456-
4451/2017/112

 Page 2 of 7

 (5)

 (6)

The solution of the matrix is computed as follows:

where is the Moore-Penrose generalized inverse of the
matrix .

The SOM

The training algorithm proposed by Kohonen for forming a self-
organizing feature map (SOM) is summarized as follows [25]-[26]:

Step 1. Initialization: Consider the network on a rectangular grid
with M rows and N columns. Each neuron in the neural network is
associated with an n-dimensional weight vector , Randomly choose
values for the initial weight vectors .

Step 2. Winner Finding: Present an input pattern to the network
and search for the winning neuron. The winning neuron at time k
is found by using the minimum-distance Euclidean criterion:

 (8)

where represents the kth
input pattern and indicates the Euclidean norm.

Step 3. Weight Updating: Adjust the weights of the winner and its
neighbors using the following updating rule:

where is a positive constant and is the topological
neighborhood function of the winner neuron at time k.

Step 4. Iterating: Go to step 2 until some pre-specified termination
criterion is satisfied.

The Proposed SOM-Like Approach to Inverse Kinematics
Modeling

The goal of the proposed SOM-like approach to inverse kinematics
modeling is to derive an corresponding joint angles, from any
fingertip position, . It involves two phases: (1) the off-line training
phase and (2) the real-time manipulating phase. While the off-line
training phase is to derive the inverse kinematics model for each
sampling point over the discretized work space of the robot arm from
a collected training data set, the real-time manipulating phase is to
compute the corresponding angles for a particular fingertip position
based on the trained inverse kinematics model in real-time.

1()f xθ −=
 

x


jw
θ

F x F p J p x p      ≅ + −      
      

    

x


: n mF x  → 
 



 

()J p


p


()J p


()F x


1 1

1

1

()
n

m m

n

F F
x x

J p
F F
x x

∂ ∂ … ∂ ∂ 
=  
 ∂ ∂ …
 ∂ ∂ 



  

p


1 1 ,, ,..., ,N Nx F xx F x     
         

  

()F J p p∆ = ∆

()

()
()

1 11 1

1

1 ()

()

, , and
n

n m mn m nn

F x F p J J

J p

F x F p J J

x p
p F

x p
×

−

=

−

−     
     ∆ = ∆ =     
 −        



   





()() ()()1 1 , ,, ,..., , ,N Nx F x p F px F x  
    

    

()() ()()1 1 , ,, ,..., , ,N Nx F x p F px F x  
    

    

1 1
1 1 11 1 1 1

1 1
1

N N
n

N N
m m m mn n nm nm N n N

F F J J p p

F F J J p p
×× ×

   ∆ ∆ ∆ ∆ 
    =    
    ∆ ∆ ∆ ∆    

  

    

  

()m N m n n NF J p p× × ×∆ = ∆

m nJ ×

()() () ()()† 1
()

T T
T T T

m n m N n N m N n N n N n NJ p F p F p p p
−

× × × × × × ×
   = ∆ ∆ = ∆ ∆ ∆ ∆   
   

()() () ()()† 1
()

T T
T T T

m n m N n N m N n N n N n NJ p F p F p p p
−

× × × × × × ×
   = ∆ ∆ = ∆ ∆ ∆ ∆   
   

()()†T
n Np ×∆

()T
n Np ×∆

w


(0)jw


()kx


*j

*

1Arg min || () () ||jj M Nj x k w k≤ ≤ ×= −
 

() () () ()1 2, , ,
T

nk x k x k x kx = …  


() () () () () ()* ,
1

 1

j j jj j
k k k k x k k

for j M

w w w

N

η  + = + Λ − 
≤ ≤ ×

   

)(kη)(,* kjjΛ
*j

x


θ


https://doi.org/10.15344/2456-4451/2017/112
https://doi.org/10.15344/2456-4451/2017/112

The off-line training phase

The proposed off-line training phase integrates the merits of the
SOM-based approach and the lookup table-based approach.It fully
utilizes the topology-preserving property of the SOM algorithm to
generalize the modeling capability from collected data to unknown
data space. In addition, similar to the table-based approach, it is able
to calculate the necessary information to derive the inverse kinematics
with no need of a complicated learning procedure. The principal idea
behind the proposed modeling method is to discretize the workspace
of a robot arm into a cubic lattice consisting of Nx×Ny×Nz sampling
points. Each sampling point corresponds to a non-overlapping
reciprocal zone in the workspace. For each sampling point, we will
stores four weight vectors or data terms (i.e.

) in order to quickly derive corresponding joint angles .
for any fingertip position located inside the corresponding reciprocal
zone of the sampling point via the first-order` Taylor expansion. All
these four data terms can be quickly learned by the proposed off-line
training phase.

The off-linetraining phase is describedas follows:

Step 1: Workspace Specification- First of all, we need to specify
where the workspace of the robot arm is. Assume that the workspace
of the robot arm is located in the region defined by [mx,Mx]×[my,My
]×[mz,Mz]where the parameters, mx,Mx, my,My,mz, and Mz are the
lower bounds and upper bounds for the workspace with respective to
the axes, X, Y, and Z, respectively.

Step 2: Lattice Determination- Discretize the work space into an
equidistant cubic lattice consisting of Nx×Ny×Nz template points.
The more template points the workspace has, the smaller the
approximation error the training phase will achieve. Accordingly, we
set the SOM network structure to be a 3-dimensional lattice structure
with the network size,Nx×Ny×Nz. Each neural node isthenrespectively
assigned to its correspondingtemplate point. Therefore, the reciprocal

zone of each neural nodeis .

Each neural node then needs to store the its corresponding fourweight
vectors: the coordinates vector of the sampling point wc , .
, the template position vector the joint angle vector , and
the Jacobian matrix W(k,l,m). These four weight vectors will be computed
in the following steps from a set of training data.

Step 3: Collecting training data- Assume the forward kinematics
model of the robot arm has been developed via some kind of forward
kinematics modeling method. Based on the generated forward
kinematics model, we can easily derive the position of the fingertip of
the robot arm from a given combination of joint angles. The training
data can be constructed by either the uniformly discretization
scheme or the real-life data generation scheme. If we have generated
the forward kinematics model then we suggest to use the uniformly
discretization scheme. Let RAi and ∆θi represent the physical range
limit and the sampling step for the ith joint, respectively. Therefore,

we will collect training

data, , where Nact represent the

number of joint angles. The more training data we collect, the higher

the performance of our method will achieve. The prices paid for the
high performance are: (1) the need of larger memory for storing the
corresponding four weight vectors and (2) the more training time.

Step 4: Training of the SOM network- It involves the following four
sub-steps.
(4.1) Initialization: For each neural node, its corresponding
fourweight vectors are initialized as follows:

(4.2) Winner Finding:Present an input pattern to the network
and search for the winning neuron. The winning neuron(k*, l*, m*)
corresponding to the input pattern is found by using the minimum-
distance Euclidean criterion:

(4.3) Weight Updating:Adjust the weights of the winning neuron
using the following updating rule:

A flag is attached to each neural node to indicate whether the
node has already won one competition. If the node has won for at
least one competition then the value of its flag will be set to be one;
otherwise, zero. After all Ns training data have been presented to
the SOM network, the neural nodes with non-zero flag value are
regarded as “template nodes”. On the contrary, neural nodes with a
zero flag value are claimed to be “novice nodes”. All novice nodes have
to enter the next sub-step to update their weight vectors. One thing
should be pointed out is that several neural nodes may have won the
competitions for more than one time. If this case happens then the
training data with the smallest distance to the coordinates position
vector, is adopted to update the particular node’s template
position vector via (15).

(4.4) Updating the empty nodes’ weights: In this sub-step, we fully
utilize the topology-preserving property of the SOM. We assume
that neural nodes have similar responses as their neighboring nodes.
Based on this assumption, the weight vectors of a novice node can
be computed from its neighboring nodes. For each novice node
(k, l, m), we will find how many neighbors of the novice node are
already template nodes. We only consider its 3×3×3 neighboring
nodes. The novice nodes are sorted in a decreasing order according
to the numbers of their neighboring nodes which are template nodes.
According to the sorted order, the joint angle vector .of a novice
node is updated as follows:

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 1. 2017. 112

Citation: Su MC, Hsueh CC (2017) An SOM-Like Approach to Inverse Kinematics Modeling. Int J Comput Softw Eng 2: 112. doi: https://doi.org/10.15344/2456-
4451/2017/112

 Page 3 of 7

(, ,) (, ,) (, ,) (, ,), , , and w
c t j
k l m k l m k l m k l mw w w

θ  

(, ,) (, ,) (, ,) (, ,), , , and w
c t j
k l m k l m k l m k l mw w w

θ  

θ


x


(1) (1) (1)
y yx x z z

x y z

M mM m M m
N N N

−− −
× ×

− − −

(k,l,m)
→

(, ,)
c
k l mw

(, ,)
t
k l mw

J

1 2

1 2

1 1 (1)act

act

N

s

N

RARA RA
N

θ θ θ
= + × + ×…× +

∆ ∆ ∆

   
   
   

1 21 2, , , , ,..., s s
N Nxx x θθ θ     

     
     

    



(), , (, ,)
(1) (1) (1)

y yc Tx x z z
x y zk l m

x y z

M mM m M mm k m l m m
N N N

w
−− −

+ × + × + ×
− − −

 亖

(), , (, ,)
(1) (1) (1)

y yt Tx x z z
k l m x y z

x y z

M mM m M m
m k m l m m

N N N
w

−− −
+ × + × + ×

− − −

 亖

(), , (0, ,0)T
k l mwθ

亖

(10)

(11)

(12)

(), ,

0 0

0 0

J
k l mW

… 
 
 
 … 

  亖 (13)

ix

ix

(),0 1,0 1,0 1

* *
, ,

*(, ,)
x y zk N l N m N

c
i k l mk l wm x

≤ ≤ − ≤ ≤ − ≤ ≤ −
= − 

 Arg min

()* * *, ,
t

ik l m
w x= 

(14)

(15)

()* * *, ,
t

ik l m
xθ = 



(16)

(, ,)k l
t

mw

(, ,)k l mwθ

(, ,)k l mwθ

https://doi.org/10.15344/2456-4451/2017/112
https://doi.org/10.15344/2456-4451/2017/112

Citation: Su MC, Hsueh CC (2017) An SOM-Like Approach to Inverse Kinematics Modeling. Int J Comput Softw Eng 2: 112. doi: https://doi.org/10.15344/2456-
4451/2017/112

where NS(k,l,m) represents the set of template nodes within the 3×3×3
region. After the updating change, a novice node then becomes a
template node. This process is repeated until all novice nodes are
updated and become template nodes.

Step 5: Computationof Jacobian matrix- According to Eq. (1), if the
template point is very close to the data point then the joint angles .
corresponding to a particular location can be linearly approximated
as follows:

Where is a template point with the Jacobian matrix J(). An
immediate problem is how to compute the Jacobian matrix for each
template point. After Step 4, the neural node located at the sampling
point has been assigned a template position weight vector,
, and a joint angle weight vector, . Assume each node
has Nnbneighboring nodes. For example, nodes located at the eight
corners have only 3 neighboring node but most of the nodes inside
the lattice have 26 neighboring nodes. Then we can construct a set
of Nnb data pairs for the neural nodelocated at to estimate the
corresponding Jacobian matrix via (7). To be concise and clear, we
denote the Nnb data pairs for h = 1,…, Nnb as follows:

These Nnb data pairs should meet the following conditions:

where the Jacobian matrix J is a Nact ×3 matrix since there are Nact
joints and the workspace is a 3-dimensional space. Via (7) the Jacobian
matrix can be computed as follows:

where

The real-time manipulating phase

After the off-line training procedure, an inverse kinematics model
has been approximated via a trained SOM network with Nx×Ny×Nz
lattice structure. Each neural node stores the necessary information
(e.g., the template position weight vector the joint angle

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 1. 2017. 112

 Page 4 of 7

weight vector , and the Jacobian matrix weight vector .
within the reciprocal zone) for the inference of the first-order Taylor
expansion. The trained inverse kinematics model can be used to
predict a set of appropriate joint angles given a special targeted
position vector .

Results and Discussion

Step 1: Initialization: Set the iteration parameter k=0 and set the
initial real position vector	 to be the targeted position vector, .
(=).

Step 2: Winner finding: Present the present positionx to the
network and search for the winning neuron. The winning neuron
(k*, l*, m*) at time k is found by using the minimum-distance Euclidean
criterion:

We search the sampling point of which reciprocal zone is the closest
to the present real position vector . If k> 0, then ,
which will be calculated at the next step.

Step 3: Calculating the joint angles: The joint angles are approximated
by he first-order Taylor series expansion via the joint angle vector
 , and the Jacobian matrix :

Where and

Step 4: Actuating the joint angles: Let the robot arm move to the
new real position, , according to the joint angles, θ(k+1),
computed by the previous step.

Step 5: Termination criteria: If the new real position is close enough
to the target position (e.g., the approximation error between the target
position and the final real position where ϵ is
a pre-specified threshold) then we terminate the procedure; otherwise,
we set k = k + 1 and go to step 2 until some pre-specified iteration
number is reached.

Simulation Results

To test the performance of the proposed SOM-Like inverse
kinematics modeling method, humanoid robots arm with 5 degrees
of freedom was our test platform. The design of the robot arm was
from the InMoov project [27]. The InMoov was the first open source
3D printed life-size robot. Based on the open source and a 3D printer,
we implemented a humanoid robot arm with 5 degrees of freedom
as shown in Figure 1. The Denavit-Hartenberg (DH) method is the
most common method to construct a forward kinematics for a robot
platform based on four parameters (e.g., the link length, link twist,
link offset or distance, and joint angle) [28]. A coordinate frame is
then attached to each joint to determine the DH parameters. Figure 2
shows the coordinate frame assignment for the robot arm.

Based on the forward kinematics, 20,800 training data points and
9,072 testing data points were generated, respectively. Figure 3 shows
the workspace of these data points. The physical boundaries of these
data points and the way for generating the data points are tabulated in
Table 1. We then used five different network sizes to discuss whether
the network size would influence the approximation performance.

(, ,)

(, ,) (, ,)
(, ,) (, ,)

(, ,)
(, ,) (, ,)

1

(, ,) (, ,) 1
k l m

c c
k l m i j h

k l m i j h

c ci j h NS
k l m i j h

w
w

i j h NS k l m
w

w

w w

θ θ

∈

−
= ∈

−

∑
∑





 



  (17)

p x

x
θ


() () ()()x p J p x pθ θ≅ + −     (18)

pp

(, ,)k l mwθ

(, ,)k l
t

mw
(), ,
c
k l mw

(), ,
c
k l mw

() () () () ()()1, 1, 1 , , 1, 1, 1 , ,, , t t
h h k l m k l m k l m k l mx w ww wθ θθ ± ± ± ± ± ±∆ ∆ = − −


    (19)

(20)

() ()() 1

3 3 3 3act act nb nb nb nb

T
T T

N N N N N NJ X X X
−

× × × × ×
 

= ∆Φ ∆ ∆ ∆ 
 

(21)

() ()

() ()

11 13
1 1 1 1

1 3 1 1 1 3

1 3

11 13

3 1 1 3

1 3

, , , ,

, , , ,

act act

act act

nb nb nb nb

nb act nb act

act act

T T

N N

N N

T TN N N N
N N N N

N N

J J
J x x x

J J

J J
J x x x

J J

θ θ θ

θ θ θ

×

×

  
  ∆ ≅ ∆ ⇒ ∆ … ∆ ≅ ∆ … ∆  
   

    ∆ ≅ ∆ ⇒ ∆ … ∆ ≅ ∆ … ∆     







  











  



1
1 1

1

nb

act nb

nb

act act

N

N N
N

N N

θ θ

θ θ
×

 ∆ ∆
 ∆Φ =  
 ∆ ∆ 



  



(22)

1
1 1

3
1
3 3

nb

nb

nb

N

N
N

x x
X

x x
×

 ∆ ∆
 ∆ =  
 ∆ ∆ 



  



(23)

(, ,)k l
t

mw

(, ,)k l mwθ
(, ,)
J
k l mW

targetθ


targetx

()0x targetx

()0x targetx

()x k

(),

* * *
0 1,0 1,0 1 , ,(, ,) Arg min ()

x y z

c
k N l N m N k l mw xk l m k≤ ≤ − ≤ ≤ − ≤ ≤ −= −  (24)

()x k () ()realx k x k= 

* * *(, ,)k l m
wθ

* * *(, ,)
J
k l m

w

() () () () * * *(, ,)
1 (())J

target realk l m
k k k k w x x kθ θ θ θ+ = + ∆ ≅ + −   (25)

* * *(, ,)
(0) t

real k l m
wx =  () * * *(, ,)

0
k l m

wθθ =




(1)real kx +

()1real targetx k x+ − ≤  

https://doi.org/10.15344/2456-4451/2017/112
https://doi.org/10.15344/2456-4451/2017/112

Citation: Su MC, Hsueh CC (2017) An SOM-Like Approach to Inverse Kinematics Modeling. Int J Comput Softw Eng 2: 112. doi: https://doi.org/10.15344/2456-
4451/2017/112

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 1. 2017. 112

 Page 5 of 7

Table 2 tabulates the average approximation error, the maximum
approximation error, and the computational time. The simulation was
done on a PC with 4.0 GB memory, Intel Core i7-2600 CPU @ 3.40
GHz, and the operating system Windows 7. Two observations can
be concluded. First of all, the larger the network size is the smaller
the average approximation error is reached. Secondly, the larger
the network size is the longer the computational time is required.
We then took a tradeoff between the approximation error and the
computational efficiency to choose an appropriate network size for
the following two simulated examples.

After the inverse kinematics model of the robot arm has been
constructed, two simulated examples were designed to further test the
performance of the proposed SOM-Like inverse kinematics modeling
method.

Example one: Tracking a Circular Helix

The first simulation was designed to track the circular helix defined
as:

The circular helix was sampled for every ∆θ=1° and there were
total 720 sampling points. Figure 4 shows the circular helix tracked
in the workspace, 200.0 mm×200.0 mm×72.0 mm, with an average
error 5.73 mm if the maximum iteration number is only 1. To further
decrease the approximation error, the termination criterion parameter
ϵ was set to be 0.5 mm so that the real-time manipulating phase took
about 0.0306 milliseconds to repeat the iterative procedure for 200
iterations. Finally, the average approximation error decreased to be
0.283 mm.

Example two: Writing a letter “B”

The second simulation was designed to write a letter “B” as follows:

Line 1: x = -207.7mm, z = 638.8mm, -493.3mm ≤ y ≤ -293.3mm

Ellipse 1: 90≤θ≤-90

Figure 1: The humanoid robot arm with 5 degrees of freedom used as
the test platform.

Figure 3: The workspace of the training data and the testing data.

Figure 2: The coordinate frame assignment for the robot arm.

Joints Training data Testing data

Physical limits ∆θ Physical limits ∆θ

wrist 0°~ 90° 10° 5°~ 85° 10°

bicep 0°~ 60° 5° 25°~ 57.5° 5°

rotate -70°~ 0° 10° -65°~ 5° 10°

shoulder 30°~ 60° 10° 35°~ 55° 10°

shoulder blade 0°~ 20° 5° 2.5°~17.5° 5°

Table 1: The physical boundaries of the robot arm.

Data Set Network
size

Average
Error(mm)

Maximum
Error (mm)

Computational
Time (Sec.)

Training
Data
Set

5×5×5 36.15258494 119.3132718 12.3940467

10×10×10 12.57448587 59.03169383 13.8339731

15×15×15 7.013908311 70.72144217 18.9198033

20×20×20 4.965376925 51.22875539 33.0356172

20×30×15 4.957974223 60.27973511 53.5397344

Testing
Data
Set

5×5×5 30.56174454 121.1298817 12.3965267

10×10×10 10.04231373 40.75206502 12.7682083

15×15×15 5.993293332 46.21338893 17.3399506

20×20×20 5.024934603 48.1309779 36.6631104

20×30×15 4.91614231 49.37489347 58.9459323
Table 2: The approximation performance of the proposed SOM-Like
inverse kinematics modeling method with five different network sizes.

157.3 100.0cos cos mm
387.4 100.0sin sin mm

567.7 0.1 mm

x
y

z

θ
θ

θ

= − +
 = − +
 = + ×

207.7 200.0cos cos mm
343.3 50.0sin sin mm

638.8mm

x
y

z

θ
θ

= − +
 = − +
 =

(28)

(27)

https://doi.org/10.15344/2456-4451/2017/112
https://doi.org/10.15344/2456-4451/2017/112

Citation: Su MC, Hsueh CC (2017) An SOM-Like Approach to Inverse Kinematics Modeling. Int J Comput Softw Eng 2: 112. doi: https://doi.org/10.15344/2456-
4451/2017/112

Ellipse 2: 90≤θ≤-90

The ellipses were sampled for every ∆θ=1° and there were total 360
sampling points. The line was sampled for every 1 mm and there were
200 samples. Figure 5 shows the letter “B” tracked in the workspace,
200.0 mm×200.0 mm, with an average error 6.58 mm if the maximum
iteration number is only 1. To further decrease the approximation
error, the termination criterion parameter ϵ was set to be 0.5 mm so
that the real-time manipulating phase took about 0.0175milliseconds
to repeat the iterative procedure. Finally, the average approximation
error decreased to be 0.247 mm.

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 1. 2017. 112

 Page 6 of 7

Discussions and Conclusions

This paper introduces an SOM-Like inverse kinematics modeling
method. The proposed approach integrates the merits of the lookup
table-based approach and the SOM-based approach. Similar to the
lookup table-based approach [23], our method also adopts a regular
grid structure to store the necessary information about the inverse
kinematics. However, in our method, the regular grid structure is
created over the Cartesian position space but it is created over the
joint space in the lookup table-based approach. Similar to the SOM-
based approach [12-14], [16-20], the topology-preserving property of
the SOM is fully utilized in our method to estimate the weight vectors
of the empty neurons. The major differences between our proposed
method and the work on the use of the self-organizing feature map
(SOM) [12-14], [16-20], are as follows. While those methods will
update the winning neuron and its neighboring neurons via the
updating rule similar to (10), our method just updates the winning
neuron’s template position weight vectors but its neighboring neurons
are not updated simultaneously. The basic idea behind our method
is that once a neuron finds its appropriate template position weight
vectors, it should not be updated again and again by a rule similar
to (9); otherwise, the right template position weight vectors will be
continuously changed and become wrong at the end of the training
procedure. In addition, the methods for estimating the Jacobian
matrices are very different. For example, they used the Widrow-Hoff
type rule to estimate the Jacobian matrix for each neuron [13] but we
use the Moore-Penrose generalized inverse method as given in (21)-
(23).

	
The proposed SOM-Like inverse kinematics modeling method

was tested ona humanoid robot arm with 5 degrees of freedom.
Simulation results have shown that the proposed method could reach
the average approximation error with 0.25 mm and track a continuous
trajectory. Several observations can be concluded. First of all, the
larger the network size, the smaller the average approximation error.
However, a larger network size will require more computational time.
Therefore, we have to take a tradeoff between the approximation error
and the computational efficiency to choose an appropriate network
size. Secondly, if we allow the real-time manipulating phase to iterate
more times, then the approximation errors can be greatly decreased.

Competing Interests

The authors declare that they have no competing interests.

Funding

This paper was partly supported by supported by Ministry of
Science and Technology, Taiwan, R.O.C, under 106-2221-E-008-092,
105-2218-E-008-014, and 104-2221-E-008-074-MY2.

References

1.	 Gu YL, Luh J (1987) Dual-number transformation and its application to
robotics. IEEE J Robot Automation 3: 615-623.

2.	 Kim JH, Kumar VR (1990) Kinematics of robot manipulators via line
transformations. J Robot Syst 4: 649-674.

3.	 Caccavale F, Siciliano B (2001) Quaternion-based kinematic control
of redundant spacecraft/ manipulator systems. In proceedings of the
2001IEEE international conference on robotics and automation, pp. 435-
440.

4.	 Kucuk S, Bingul Z (2004) The Inverse Kinematics Solutions of Industrial
Robot Manipulators, IEEE Conference on Mechatronics, pp. 274-279.

207.7 200.0cos cos mm
443.3 50.0sin sin mm

638.8mm

x
y

z

θ
θ

= − +
 = − +
 =

(29)

Figure 4: The circular helix tracked by a 10×10×10 SOM model.

Figure 5: The letter “B” tracked by a 10×10×10 SOM model.

https://doi.org/10.15344/2456-4451/2017/112
https://doi.org/10.15344/2456-4451/2017/112
https://doi.org/10.1109/JRA.1987.1087138
https://doi.org/10.1109/JRA.1987.1087138
http://onlinelibrary.wiley.com/doi/10.1002/rob.4620070408/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rob.4620070408/abstract
https://doi.org/10.1109/ICMECH.2004.1364451
https://doi.org/10.1109/ICMECH.2004.1364451
https://doi.org/10.1109/ICMECH.2004.1364451
https://doi.org/10.1109/ICMECH.2004.1364451
https://doi.org/10.1109/ICMECH.2004.1364451
https://doi.org/10.1109/ICMECH.2004.1364451

Citation: Su MC, Hsueh CC (2017) An SOM-Like Approach to Inverse Kinematics Modeling. Int J Comput Softw Eng 2: 112. doi: https://doi.org/10.15344/2456-
4451/2017/112

5.	 Craig JJ (2004) Introduction to Robotics: Mechanics and Control, 3rd edn,
Englewood Cliffs, NJ: Prentice-Hall.

6.	 Balestrino A, De Maria G, Sciavicco L (1984) Robust control of robotic
manipulators, In Proceedings of the 9th IFAC World Congress 5: 2435-
2440.

7.	 Wolovich WA, Elliott H (1984) A computational technique for inverse
kinematics, The 23rd IEEE Conference on Decision and Control, pp.1359-
1363.

8.	 Wampler CW (1986) Manipulator inverse kinematic solutions based on
vector formulations and dampedleast-squares method, in Proceeding of
the IEEE Transactions on Systems, Man and Cybernetics 16: 93-101.

9.	 Nakamura Y, Hanafusa H (1986) Inverse kinematic solutions with singularity
robustness for robotmanipulator control. Journal of Dynamic Systems,
Measurement, and Control 108: 163-171.

10.	 Wang LCT, Chen CC (1991) A combined optimization method for solving
the inverse kinematics problem of mechanical manipulators. IEEE Trans
Robot Automation 7: 489-499.

11.	 Buss SR, Kim JS (2005) Selectively damped least squares for inverse
kinematics. Journal of Graphics Tools 10: 37-49.

12.	 Martinetz TM, Ritter HJ, Schulten KJ (1990) Three-dimensional neural net
for learning visuomotor coordination of a robot arm. IEEE Trans on Neural
Networks 1: 131-136.

13.	 Walter J, Schulten K (1993) Implementation of self-organizing neural
networks for visuo-motor control of an industrial robot. IEEE Trans Neural
Netw 4: 86-96.

14.	 Behera L, Gopal M, Chaudhury S (1995) Self-organizing neural networks
for learning inverse dynamics of robot manipulator. IEEE/IAS International
Conference on Industrial Automation and Control, pp 457-460.

15.	 Araujo A, Vieira M (1998) Associative memory used for trajectory generation
and inverse kinematics problem. IEEE International Joint Conference on
Neural Networks 3: 2057-2062.

16.	 Behera L, Kirubanandan N (1999) A hybrid neural control scheme for
visual-motor coordination. IEEE Control Systems 19: 34-41.

17.	 Kumar N, Behera L (2004) Visual–motor coordination using a quantum
clustering based neural control scheme. Neural processing letters 20: 11-
22.

18.	 de Angulo VR, Torras C (2005) Using PSOMs to Learn Inverse Kinematics
Through Virtual Decomposition of the Robot. International Work-
Conference on Artificial Neural Networks 3512: 701-708.

19.	 Shen W, Gu J, Milios E (2006) Self-configuration fuzzy system for inverse
kinematics of robot manipulators, Annual meeting of the North American
Fuzzy Information Processing Society, pp. 41-45.

20.	 Kar I, Betha l (2010) Visual motor control of a 7 DOF robot manipulator
using a fuzzy SOM network. Intelligent Service Robotics. 3: 49.

21.	 Tarokh M (2007) Real time forward kinematics solutions for general Stewart
platforms. in IEEE International Conference on Robotics and Automation,
pp.901-906.

22.	 Jiang L, Sun D, Liu H (2009) An inverse-kinematic stable-based solution
of a humanoid robot finger with nonlinearly coupled joints. IEEE/ASME
Transactions on Mechatronics 14: 273-281.

23.	 Halfar H (2013) General purpose inverse kinematics using lookup-tables.
IEEE International Conference in Industrial Technology, pp. 69-75.

24.	 Kucuk S, Bingul Z (2006) Robot kinematics: forward and inverse kinematics,
Industrial Robotics: Theory, Modelling, and Control. pp. 117-148.

25.	 Kohonen T (1989) Self-Organization and Associative Memory, 3rd edn,
New York, Berlin: Springer-Verlag.

26.	 Kohonen T (1995) Self-Organization Maps, Springer-Verlag.

27.	 Langevin G, InMoov.

28.	 Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair
mechanisms based on matrices. Journal of Applied Mechanics 22: 215-
221.

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 1. 2017. 112

 Page 7 of 7

https://doi.org/10.15344/2456-4451/2017/112
https://doi.org/10.15344/2456-4451/2017/112
https://books.google.co.in/books/about/Introduction_to_Robotics.html%3Fid%3DMqMeAQAAIAAJ%26redir_esc%3Dy
https://books.google.co.in/books/about/Introduction_to_Robotics.html%3Fid%3DMqMeAQAAIAAJ%26redir_esc%3Dy
https://doi.org/10.1109/CDC.1984.272258
https://doi.org/10.1109/CDC.1984.272258
https://doi.org/10.1109/CDC.1984.272258
https://doi.org/10.1109/TSMC.1986.289285
https://doi.org/10.1109/TSMC.1986.289285
https://doi.org/10.1109/TSMC.1986.289285
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx%3Farticleid%3D1403812
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx%3Farticleid%3D1403812
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx%3Farticleid%3D1403812
http://ieeexplore.ieee.org/document/86079/
http://ieeexplore.ieee.org/document/86079/
http://ieeexplore.ieee.org/document/86079/
http://www.tandfonline.com/doi/abs/10.1080/2151237X.2005.10129202
http://www.tandfonline.com/doi/abs/10.1080/2151237X.2005.10129202
http://ieeexplore.ieee.org/document/80212/
http://ieeexplore.ieee.org/document/80212/
http://ieeexplore.ieee.org/document/80212/
https://www.ncbi.nlm.nih.gov/pubmed/18267706
https://www.ncbi.nlm.nih.gov/pubmed/18267706
https://www.ncbi.nlm.nih.gov/pubmed/18267706
https://doi.org/10.1109/IACC.1995.465797
https://doi.org/10.1109/IACC.1995.465797
https://doi.org/10.1109/IACC.1995.465797
http://ieeexplore.ieee.org/document/687176/
http://ieeexplore.ieee.org/document/687176/
http://ieeexplore.ieee.org/document/687176/
http://ieeecss.org/CSM/library/1999/aug1999/03-hybridneuralcontrol.pdf
http://ieeecss.org/CSM/library/1999/aug1999/03-hybridneuralcontrol.pdf
https://link.springer.com/article/10.1023/B:NEPL.0000039429.89321.07
https://link.springer.com/article/10.1023/B:NEPL.0000039429.89321.07
https://link.springer.com/article/10.1023/B:NEPL.0000039429.89321.07
https://link.springer.com/chapter/10.1007/11494669_86
https://link.springer.com/chapter/10.1007/11494669_86
https://link.springer.com/chapter/10.1007/11494669_86
https://doi.org/10.1109/NAFIPS.2006.365856
https://doi.org/10.1109/NAFIPS.2006.365856
https://doi.org/10.1109/NAFIPS.2006.365856
https://link.springer.com/article/10.1007/s11370-009-0058-3
https://link.springer.com/article/10.1007/s11370-009-0058-3
https://doi.org/10.1109/ROBOT.2007.363100
https://doi.org/10.1109/ROBOT.2007.363100
https://doi.org/10.1109/ROBOT.2007.363100
https://doi.org/10.1109/ICIT.2013.6505650
https://doi.org/10.1109/ICIT.2013.6505650
http://cdn.intechweb.org/pdfs/379.pdf
http://cdn.intechweb.org/pdfs/379.pdf
http://www.inmoov.fr/project/
http://www.citeulike.org/user/tfx/article/7153318
http://www.citeulike.org/user/tfx/article/7153318
http://www.citeulike.org/user/tfx/article/7153318

