
Abstract

One of the main tasks of vision systems is to support autonomous vehicle navigation in unstructured
environments, where unexpected objects can suddenly appear. For this, they can use various information
sources (cameras, ultrasonic sensors, GPS systems, LIDAR, etc.) to model the environment in which
they operate. All these data are combined to extract all the information needed to guide their movement
through the environment. The complexity of this task prevents the integration of vision systems into
real-time control systems (autonomous vehicles, mobile robots, etc.). This is because most of the
research carried out within the computer vision field focuses on hardware development or on creating
new algorithms and methods for performing the analysis and manipulation of the image data. However,
system development issues are treated as secondary. Consequently, designs are very efficient but very
little reusable. On the other hand, real-time systems possess features that make them particularly
sensitive to whatever architectural decisions are made. The use of software frame works and components
has demonstrated its effectiveness in improving software productivity and quality. This work proposes
a novel approach, called ViSel-TR, for developing vision systems seeking two main objectives: (1)
efficient interpretation and reasonable response time in an unstructured environment and (2) use of
different development paradigms offered by software engineering that allow their integration in real-
time systems. In order to achieve these objectives, ViSel-TR uses model driven software development
techniques in order to separate the description of component-based real-time applications from their
possible implementations for different platforms.

ViSel-TR: A Novel Approach for Developing Component-based Vision
Systems Working in Unstructured Environments

Publication History:

Received: January 20, 2016
Accepted: November 08, 2016
Published: November 10, 2016

Keywords:

Component-based Software
Development, Model-Driven
Software Development,
Frameworks, Computer Vision

Review Article Open Access

Introduction

The processes of requirements analysis, definition and management
are essential to address the design and implementation of any
application. Meeting the functional requirements of a product is
directly related to its effectiveness. In general, an effective system is
one that provides the functionality to fulfill its requirements. However,
the concurrence of additional, non-functional requirements might
prevent the implementation of all the expected functionality. Usually,
there are several combinations of algorithms that solve a particular
problem with the same effectiveness. Then, the choice of one or other
depends on the degree in which they improve other requirements
such as efficiency. A vision system is more efficient if features such as
speed, accuracy, etc. are incremented and the amount of consumed
resources such as memory, processing, energy, etc. are decremented.

In order to increase the efficiency of the tasks related to image
processing, we could use two approaches: (1) to improve the efficiency
of algorithms (software approach) or (2) to run these algorithms on a
more powerful platform (hardware approach). Because vision systems
are by nature heterogeneous systems, it is possible to combine the
expressiveness and flexibility of programming languages with the
efficiency of hardware. Therefore, we can create more flexible solutions
to delay the choice of hardware and improve current designs by using
different development paradigms offered by Software Engineering.

Traditionally the majority of research within the software for
computer vision field focuses on creating new algorithms and methods
for performing the analysis and manipulation of the image data.
The lack of focus on system development issues has forced system
developers to explicitly deal with low-level data management details.
As some authors have indicated for robots programming [1], some of
the underlying causes include: variability in the type of applications
and components that are used in that domain; difficulty of reuse
owing to the blurring of frontiers between architectural elements of

*Corresponding Author: Dr. Bárbara Álvarez, Division of Systems and Electronic
Engineering. Universidad Politécnica de Cartagena, Campus Muralla del Mar,
E-30202, Spain; E-mail: pedro.sanchez@upct.es

Citation: Álvarez B, Navarro PJ, Alonso D, Sánchez P, Iborra A (2016) ViSel-TR:
A Novel Approach for Developing Component-based Vision Systems Working in
Unstructured Environments. Int J Comput Softw Eng 1: 107. doi: http://dx.doi.
org/10.15344/ijcse/2016/107

Copyright: © 2016 Álvarez et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

different types (device managers, algorithms, middleware, etc.), and
lastly the lack of interoperability between tools used in the different
development stages.

In this context, Component-Based Software Development (CBSD)
is a design alternative that favors the reuse of software elements and
facilitates the development of systems from pre-existing elements.
A software component is a unit of composition with well-defined
interfaces and an explicit use context. As established in [2], the
principles of CBSD can be applied in practice either by considering the
components as objects or by considering them as architectural units
[3]. CORBA Component Model [4] is an example of the first case,
while Architecture Description Languages (ADLs) [5] are examples
of the second case. The benefits of adopting the first approach
(components as objects) derive from the broad dissemination of this
technology (tools, implementation environments, etc.). However,
object orientation (OO) defines interaction mechanisms (method
invocation) that tend to couple the objects and hinder their reuse.
On the other hand, considering the components as architectural units
obviates the above drawbacks, since they only interact through their
ports, thus reducing coupling and facilitating reuse.

The development of applications based on a CBSD approach, where
the components are considered as architectural units, still requires
solutions to two problems: (1) to have a set of techniques, tools and

International Journal of
Computer & Software Engineering

Bárbara Álvarez*, Pedro J. Navarro, Diego Alonso, Pedro Sánchez and Andrés Iborra
Division of Systems and Electronic Engineering, Universidad Politécnica de Cartagena, Campus Muralla del Mar, E-30202, Spain

Int J Comput Softw Eng IJCSE, an open access journal
 Volume 1. 2016. 107

 Álvarez et al., Int J Comput Softw Eng 2016, 1: 107
 http://dx.doi.org/10.15344/ijcse/2016/107

http://dx.doi.org/10.15344/ijcse/2016/107
http://dx.doi.org/10.15344/ijcse/2016/107
http://dx.doi.org/10.15344/ijcse/2016/107

Int J Comput Softw Eng IJCSE, an open access journal
 Volume 1. 2016. 107

methods to support that approach, and (2) to define and implement
a series of mechanisms to convert the CBSD designs to executable
programs (i.e. a compiler for a component-based language). Model
Driven Software Development (MDSD) approach [6] provides the
theoretical bases and the tools necessary to solve the above two
problems.

Following the MDSD approach, a system can be represented at a
certain level of abstraction using models. With the right selection of
levels of abstraction it is possible to separate software artifacts that
are independent of the implementation platform and ones that are
not. Models are therefore the main artifacts driving the development
process. According to [7], these models are simplified representations
of reality in which non-relevant details are abstracted, thus improving
both comprehension and communication of the reality underlying
these models. The models are defined as meta-models, which embody
the concepts relevant to a particular domain of application, and also
the relationships between them (in other words, they represent the
abstract syntax of the language). Model-to-model transformations
[8] are also key mechanisms in MDSD, defining as they do the way
in which these models will be interpreted and transferred to other
representations at the same or a different level of abstraction, until
finally code is generated in an implementation language. In summarize,
the first problem can be solved, at least in part, by defining meta-
models with which to build models of applications using the CBSD
approach. Model-to-model transformations provide a mechanism
with which to solve the second problem. Although relatively novel,
MDSD has produced promising results in applicable domains such as
automotive, aviation and electronics among others [9].

In order to maintain a generic software approach, the solution
adopted to transform component models into executable code should
be validated for a set of computer vision applications that share certain
minimum features. In terms of implementation, software frameworks
are the artifacts that offer the highest level of code reuse and flexibility,
given that it is possible to consider semi-complete applications which
are specialized to produce concrete applications [10]. A framework
embodies the features common to many applications in the domain
of interest, and at the same time offers specialization mechanisms
and points of variability with which to specify differences. In this
way, the Software Product Line (SPL) paradigm is considered for
obtaining its obvious advantages [11]. Frameworks are designed
using design patterns and integrate the architectural decisions using
the same artifacts to model and build all the products of a family
ViSel-TR enhances the flexibility and reuse of designs using the
previous paradigms offered by Software Engineering. To show the
novel approach and validate it, this article shows the development
of a selective vision for cataloguing road signals in order to facilitate
the performing of maintenance operations. This application has
been developed incrementally un four scenaries, with the help of
C-Forge [12], which is an Eclipse-based Model-Driven tool-chain
for supporting a component-based development process that relies
on: (1) a component model (WCOMM) for modeling applications
by means of components, ports and connections among them and,
(2) a component framework (FRACC) that provides the runtime
support for executing the component-based application modeled
with WCOMM.

The ViSelTR main feature that has allowed to ensure compliance of
all requirements in unstructural environments, it has been the capacity
to reduce the amount of visual information that the computer vision
system has to process. For that, -ViSelTR has used a set of sensors

Citation: Álvarez B, Navarro PJ, Alonso D, Sánchez P, Iborra A (2016) ViSel-TR: A Novel Approach for Developing Component-based Vision Systems Working
in Unstructured Environments. Int J Comput Softw Eng 1: 107. doi: http://dx.doi.org/10.15344/ijcse/2016/107

 Page 2 of 10

which supply non-dependent data of the visual information captured
by the cameras, such as illumination, global robot position (GPS),
meteorological information, speed, time, etc. With this new approach,
the vision system will be capable of processing visual information in
real-time because the selected scenario is previously known.

In the following section, this article describes related works
that include the use of the above-mentioned paradigms to develop
computer vision applications. Section 3 describes the architectural
guidelines that have been considered as a starting point for obtaining
a generic software architecture for vision systems that will operate in
unstructured environments, and describes the architecture that will
be translated to components. Section 4 briefly describes C-Forge as
well as the case study used to validate the proposed approach. Finally,
sections 5 and 6 present conclusions and future works.

Related Works

Despite the expected benefits of using the CBSD approach in
software development, there is no complete evidence of its application
on a large scale. Among general-purpose component models, we may
cite Fractal [13], the CORBA component model [4], KobrA [14],
SOFA 2.0 [15], SaveCCM [16], and Koala [17], among others. Fractal
provides an ADL to describe the architecture of the applications and
a framework for implementation of the components in Java and C/
C++. SOFA provides a similar approach, which enables component
distribution and updating, although limited to the Java language.
The CORBA CCM model was developed to build component-
based applications on the CORBA communication middleware
and provides an IDL (Interface Definition Language) to generate the
external structure of the components and facilitate their integration
in the middleware. Koala is the first component model applied to the
electronics sector; it was developed by Phillips and used as a base to
develop the software for their consumer products. KobrA is one of
the most popular proposals, in which a set of principles is defined to
describe and decompose a software system following a downstream
approach based on architectural components. But in all cases the
implementation of the code and structure of the component is still
completely dependent on the developer.

For a slightly different approach to the foregoing, we may consider
Cadena/CALM [18], which is an Eclipse environment for the design
of component-based Software Product Lines (SPL). With Cadena,
the designers first select the target component model and then the
environment provides the definition of the SPL on that basis. In our
view, selection of the target platform so early on is a drawback to the
approach, as it forces the user to adopt a component technology from
the outset. In our proposal, selection of the platform is postponed
until as late as possible.

Most of these models only deal with the structural modeling of the
application, leaving implementation of the logic of the components
(and hence their behavior) to the manual codification stage. Save CCM
is an exception in that it includes the modeling of behavior, albeit with
constraints deriving from the characteristics of the domain in real-
time systems. In this field, there have been very promising results with
the MDSD approach. Significant examples include the ArtistDesign
Network of Excellence in Embedded System Design [19] and the
OpenEmbeDD project [20]. Then also, in the automotive field the
industry has standardized AUTOSAR [21] for vehicle development
following this approach.

http://dx.doi.org/10.15344/ijcse/2016/107

In relation to frameworks new, more general and innovative
proposals have recently appeared in the literature, focusing on
the development and use of frameworks for software systems
development in general [22,23]. In [22], the authors propose a
method for specialization of OO frameworks using design patterns,
which provides a design fragment for the system as a whole. A design
fragment, then, is a proven solution to the way the program should
interact with the framework in order to perform a function. The idea
is for each framework to have its own catalogue of design fragments,
offering conventional solutions to known problems. The proposal
is validated with an Eclipse-based tool containing more than fifty
patterns.

Antkiewicz and Stephan [23] go a step further by providing a
conceptual and methodological framework for the definition and use
of framework-specific modeling languages (FSML). An FSML is an
explicit representation of the specific features of a domain as offered by
the associated framework. For instance, FSML can be used to express
“framework-specific” application models. These models describe the
instances of the features supplied by the framework that are ultimately
implemented in the application’s code. The last two works cited very
clearly illustrate the trend in the development of framework-based
applications for the coming years and should therefore be borne in
mind in any proposal in that connection.

In the context of vision systems, some our experiences can be found
in [24,25] or [26].For example, [27] describes a generic architecture
for the development of these systems from the study of three
prototypes used for the industrial sector structured environments.
To obtain the architecture, the methodology COMET [28] is applied.
In the architecture described in [27], three subsystems are identified:
(1) product inspection, (2) configuration and calibration of system
parameters, and (3) alarm management. In all cases, we observe
the same pattern for the inspection work: (1) the captured images
are processed to identify objects, (2) each object is characterized by
a series of visual properties, and (3) a classifier determines product
quality based on these properties. As a continuation of previous
work, as part of the core of common resources, two additional
elements are incorporated: (1) a library of software components for
image processing that integrates the functionality offered by several
existing libraries, and (2) a visual programming tool called IP-Code
to automatically generate prototypes. This tool is limited to the
development of vision systems that work in a structured environment,
and lacks a system to facilitate the selection of algorithms.

Other works describe some libraries that attempt to address the
subtasks of vision system development, such as OpenCV [29], VXL
[30] and Gandalf [31]. The approach offered by these frameworks is to
expose image access, manipulation and processing routines through
a function based API. However, there are a number of significant
shortcomings that are inherent to the design and approach utilized
by these libraries. Firstly, they do not provide a clear definition of
vision components. The functionality for accessing, manipulating
and processing routines is offered to the users at the same abstraction
level, using the same API. Users are forced to deal with low-level
operations such as pixel manipulation and high-level operations
such as searching for features in the whole image. Secondly, these
frameworks do not provide a comprehensive solution for vision
system development, although OpenCV provides a camera access
mechanism, the solution offered is intermediate and incomplete,
also there is no support for transportation of vision data in these
frameworks. Thirdly, the API offered by these frameworks provides

poor support for modularization. These frameworks essentially
provide a set of functions and do not address the need for developing
code that is easily reused or can be scaled to larger systems.

Open CV is probably the most widely used vision library
for extraction and processing of meaningful data from images.
However, because OpenCV assumes essentially a sequential software
architecture, the potential acceleration resources in computer vision
are fully explored to improve performance. Moreover, the OpenCV
library does not support multi-camera streams, which limits the
system scalability. Khoros [32], an integrated software development
environment with a collection of tools for image and digital signal
processing, uses pipes and filters as their underlying architecture
model[33]. This pattern supports parallel and distributed processing,
is more appropriate for a system processing a stream of data.

Open VL (Open Source Vision Library) is designed to address

efficiency, reusability and scalability [34]. Inspired by the success of
OpenGL, the intent of OpenVL is to allow users to quickly and easily
recover useful information from multiple real scenes (multi-camera
systems), and in a portable manner across hardware platforms.
By providing a hardware development middleware that supports
different hardware architectures for acceleration, OpenVL allows code
reuse without compromising performance. Finally, as an evolution
of OpenVL, [35] presents the Vision Utility (VU) framework,
which decomposes the task of vision system development into data
processing and management. VU refers to the task of processing
images which includes both analysis and manipulation of image data
as data processing, and to the tasks of (1) decoupling access to source
data from processing, (2) hiding image data format details from users
and (3) provide abstraction over inter-component communication as
data management.

Software Architecture for Vision Systems: From Structured
to Unstructured Environments

Visual information processing in unstructured environments
requires taking into account the functional requirements and the
architectural guidelines followed for developing vision systems that
work in structured environments, while incorporating additional
requirements and design aspects. Thus, in this section, some
architectural guidelines are summarized in relation to: (1) non-
functional requirements, (2) design patterns and (3) hardware
processing issues. A functional description of vision system’s
components is also shown.

In relation to non-functional requirements in computer vision
applications, there are three main systems implementation issues [34]:

(1) Efficiency: Many computer vision applications, such as nearly
all surveillance systems, require real-time performance, which
means that the systems must interact with their environments under
response-time constraints. Improving efficiency of the algorithms
helps to meet these constraints.

(2) Reusability: Dedicated and heterogeneous computer vision
processing platform have made it difficult for software developers to
port their applications from one hardware platform to another.

(3) Scalability: Significant decreases in camera prices have made
multi-camera systems possible in practical applications. It is necessary
to provide mechanisms to maintain correspondence among separate
but related video streams at the architectural level.

Int J Comput Softw Eng IJCSE, an open access journal
 Volume 1. 2016. 107

Citation: Álvarez B, Navarro PJ, Alonso D, Sánchez P, Iborra A (2016) ViSel-TR: A Novel Approach for Developing Component-based Vision Systems Working
in Unstructured Environments. Int J Comput Softw Eng 1: 107. doi: http://dx.doi.org/10.15344/ijcse/2016/107

 Page 3 of 10

http://dx.doi.org/10.15344/ijcse/2016/107

Citation: Álvarez B, Navarro PJ, Alonso D, Sánchez P, Iborra A (2016) ViSel-TR: A Novel Approach for Developing Component-based Vision Systems Working
in Unstructured Environments. Int J Comput Softw Eng 1: 107. doi: http://dx.doi.org/10.15344/ijcse/2016/107

In relation to design patterns, as mentioned above, compared to
sequential software architecture, a pipes and filters architecture [33],
which naturally supports parallel and distributed processing, is more
appropriate for a system processing a stream of data. This pattern is
used traditionally for vision systems development. In the pipes and
filters architecture, each component has a set of inputs and outputs.
The components, termed filters, read streams of data as inputs and
produce streams of data as outputs. The connectors, called pipes,
serve as conduits for the streams, transmitting the output of one filter
to the inputs of another.

The pipes and filters architecture has a number of features that make
it attractive for these applications: (1) this architecture allows the
designer to understand the overall input/output behavior of a system
as a simple composition of the behavior of individual filters, (2) this
architecture supports reuse: any two filters can be connected together,
provided they agree on the data format being transmitted, (3) the pipes
and filters architecture provides an easy synchronization mechanism,
because filters do not share data with other filters and (4) because
data-processing objects, i.e., filters, are independent, this architecture
naturally supports parallel and distributed processing. However, the
general pipes and filters architecture has its own disadvantages (for
example, because filters do not share state information with other
filters, the architecture does not provide any mechanism for users to
reconfigure the data flow routine in run time).

Finally, since three decades ago, the use of hardware platforms
with parallel processing is necessary to support real-time image
understanding applications [36]. Parallelism can be of two types:
data flow and control. Data flow parallelism is the most common in
computer vision. It arises from the nature of an image, a bi-dimensional
regular data structure. Control parallelism involves processes that can
be executed at the same time. The use of multiple cameras provides
the potential source of control parallelism.

A generic software architecture enables easy and quick code
development independent of platform. Many available hardware
platforms can be used to implement the proposed architecture. It
will provide interfaces to different devices and isolate applications
from the details to increase reusability. In particular, a generic
software architecture model for a vision system that works in a
structured environment can be derived from a comprehensive study
of traditional vision systems. Figure 1 shows a high-level diagram of
such architecture.

Int J Comput Softw Eng IJCSE, an open access journal
 Volume 1. 2016. 107

 Page 4 of 10

Components to be supplied by users can be identified from
functional requirements and the architectural guidelines mentioned
above:

(1) Retrieve the data from sources.

Sources produce image data. There are a wide variety of devices and
other media (e.g. cameras, video files, range scanners, etc.) that could
be used as sources of image data. The data capture module addresses
the task of obtaining data from these devices.

(2) Convert the data in a standard format.

Different sources employ a large variety of data formats to represent
the image data. In order for modules to communicate data effectively,
they need to agree on the transmitted data types. The data converter
module addresses allows the communication between devices with
different native representations of image data.

(3) Deliver the data from sources to modules in charge of performing
the processing.

In many vision systems, the components of the system are often
distributed over a network or physically connected to several
machines via a communication medium such as a bus. The data
communication module addresses the need for inter-communication
of data and control amongst the different modules of the vision system
and provides methods for communication configuration.

4) Data processing.

The data processing module performs the tasks of data manipulation
and analysis. We can typically identify the following components in
this subsystem:

(a) Image Processing.

This module is responsible for performing transformations to
enhance images. The changes may include, for example, an image
compression that reduces the size in memory, or an enhanced
restoration of these images to improve their quality (noise removal,
contrast enhancement, brightness, etc.).

(b) Feature Processing.

The function of this module is feature extraction of any of the
objects in the image (color, shape, size, texture, etc.).

(c) Pattern Recognition.

The task of this module is the classification of objects (expressed as a
vector of features) from a set of labeled patterns (vectors containing
the typical values of the characteristics for each class of objects).

(5) Deliver the output from processing module to other module in
charge of storing, displaying or using the output for any other purpose.

Again, the communication module performs the task of data
communication between various components of the vision system.
In this case, it communicates the processing module to the database
manager or the user interface.

Figure 1: Software architecture for vision systems working in structured
environments: a high-level diagram.

http://dx.doi.org/10.15344/ijcse/2016/107

Citation: Álvarez B, Navarro PJ, Alonso D, Sánchez P, Iborra A (2016) ViSel-TR: A Novel Approach for Developing Component-based Vision Systems Working
in Unstructured Environments. Int J Comput Softw Eng 1: 107. doi: http://dx.doi.org/10.15344/ijcse/2016/107

The functionality associated with the described architecture must
be integrated into a new architecture for vision systems working in
unstructured environments. Additional functional requirements
increase the complexity of vision systems working in these
environments. Frequently, this complexity prevents the development
of systems with suitable features to be integrated into real-time control
systems (autonomous vehicles, mobile robots, etc.).

To ensure compliance with all requirements, ViSel-TR is based
on the choice of a number of variables that are independent of the
visual information captured by the cameras, like the robot position
coordinates (GPS), meteorological information and time, etc. With
this new approach, the vision system will be capable of processing
visual information in real-time because the selected scenario is
previously known. Thus, the first objective of ViSel-TR can be
achieved: efficient interpretation and reasonable response time in an
unstructured environment. To achieve the second objective (use
different development paradigms offered by software engineering that
allow their integration in real-time systems), we propose the use of
the MDSD paradigm for separating the description of component-
based applications from their possible implementations for different
platforms. C-Forge [12] is a tool-chain that combines these and others
paradigms of the software engineering so it is used in this work as is
shown in section 4.

Taking into account the requirements of computer vision
applications that must work in unstructured environments, the
proposed software architecture is shown in Figure 2.

The application now works as follows. At any time, the vision system
can receive a command from a user interface or from another module
of the control system where vision system is integrated. Once the
system has received a command, the vision system will start searching
different objects. For this, it samples the information captured by
sensors (GPS, lighting, temperature, humidity, etc.) through a selective
filter.This information, which is independent of visual information
extracted from the images captured by the cameras, is used to select
the most suitable set of algorithms for processing the image according
to the environment conditions. For instance, we use different
algorithms for identifying road speed limit signs depending on the
illumination conditions (algorithm type 1 and type 2 in Table 1).

Int J Comput Softw Eng IJCSE, an open access journal
 Volume 1. 2016. 107

 Page 5 of 10

We also employ GPS coordinates to only look for objects that can
appear in the place where we are. For instance, if we are in a road, we
will only look for signs of speed limit lesser than 90 km/h. As shown
in Figure 2, the selective filter accesses the databases to recover all
the aforementioned information and controls the behavior of the
feature processing and matching modules. Thus, the selective filter
allows to perform two tasks: (1) select the algorithms for image
processing as above mentioned (A1, A2 or A3 see Table 1), and (2)
inform the matching module the database where it must search the
features objects. Table 1 shows all relations of ViSiT to carry out the
configuration of feature processing and matching modules to detect
speed limit signs. The configurations shown in Table 1 only use two
variables: illumination and GPS.

The feature processing module extracts a signature of the objects
found in the image by applying the algorithms previously selected
by the selective filter, depending on the environment conditions.
Afterwards, the matching module compares between the vector of
features extracted from the image after the processing step, and the
feature vector of the candidate objects stored in the database. These
candidate objects are chosen by the selective filter according again to
the environment conditions.

A Case Study: Incremental Development Of A Selective
Vision System For Cataloguing And Maintenance Of Road
Elements

The real case study in which the ViSel-TR will be validated consists
of a selective vision system for cataloguing road signals in order to
facilitate the performing of maintenance operations. Such system will
be integrated in a vehicle's control system. Briefly, the system (see
Figure 3):

1.	 Operates onboard a vehicle and interacts in real-time with its
control system,

2.	 Detects road elements in different environmental conditions
(traffic signals, semaphores, crosswalk, etc.),

3.	 Classifies and records these items based on local and global
variables,

4.	 Detects the deterioration or the absence of road elements, and
Generates status reports.

Figure 2: Proposed software architecture for vision systems working in
unstructured environments: a high-level diagram.

Speed limit signs

Variables DB feature objects

GPS 20 30 40 50 60 70 80 90 100 110 120

Urban X X X X

Rroad X X X X X X X X

Motorway X X X X

Illiminations DB Image processing algortihms

Day A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1

Day-Night A1 A1 A1 A1 A1 A1 A1 A1 A2 A2 A2

Night A3 A3 A3 A3 A3 A3 A3 A3 A4 A4 A4

Table 1: Configurations for feature processing -matching modules
to detect speed limit signs in different GPS locations and different
illumination conditions.

http://dx.doi.org/10.15344/ijcse/2016/107

Citation: Álvarez B, Navarro PJ, Alonso D, Sánchez P, Iborra A (2016) ViSel-TR: A Novel Approach for Developing Component-based Vision Systems Working
in Unstructured Environments. Int J Comput Softw Eng 1: 107. doi: http://dx.doi.org/10.15344/ijcse/2016/107

In this system two operating modes are defined:

1. Cataloguing mode.

Vision system finds road elements in the images captured by a
camera using a library of image processing functions. Once found a
road element, its feature vector is stored in a database. This vector
is composed by different parameters: some proceed from the images
processing and others proceed from the information proportioned
by the selective filter. This information includes data from different
sensors as LIDAR, GPS, accelerometers, etc. The system will generate
reports of detected elements in each mission. Such reports will include
relevant information for road maintenance as the number of elements
and their classification, position, size, weather condition, etc.

2. Maintenance mode.

The system will compare the road elements detected with the road
elements recorded in the database during the cataloguing. The system
will generate a report of the status of such elements and will inform
the user if it needs some maintenance task.

The development of the case study will be performed incrementally.
We have implemented increasingly complex scenarios that incorporate
additional functionality, new components and interactions between
them. The scenarios are the following:

(1) Scenario 1, vision system detects and identifies traffic signals. To
implement this first scenario the different components incorporated
offer the following functionality:

a. Ability to enter simple orders (start, stop, etc.).
b. Ability to gather sensory information representing local variables
(speed, acceleration, etc.) and global variables (GPS, lighting,
climate, etc.).
c. Ability to select data from local and global variables that are
independent by filtering information.
d. Ability to process images as any vision system.
e. Ability to generate and access to databases for cataloguing and
maintenance of road elements.
f. Ability to identify road elements and generate status reports.

(2) Scenario 2, the system can find new objects in its environment.
In particular, the ability to detect and identify cars was incorporated.
In this way, the number of shapes, size and type of movements of the
different objects is increased and consequently some components can

Int J Comput Softw Eng IJCSE, an open access journal
 Volume 1. 2016. 107

 Page 6 of 10

increase their complexity. In particular, the images processing
module could be reconfigured depending the local or global
information.

(3) Scenario 3, which introduces new movements by means of
incorporating models to the database in order to identify humans.
Furthermore, the images processing module has ability to learn
based on information of the different previous missions.

(4) Scenario 4, in which was incorporated the ability of detecting
the cataloged objects when they can be degraded and finding non-
identified objects. The system performs the catalogation of new
objects in databases in order to a further analysis.

A Case Study Implementation With C-Forge

The four scenarios described in this section have been implemented
using C-Forge [12]. As above mentioned, C-Forge is an Eclipse-
based model-driven tool-chain for supporting a component-based
development process that relies on:

(1) A component model WCOMM (White-box COmponent Meta-
Model) for modeling applications by means of components, ports and
connections among them, where component behavior is expressed
as finite state-machines. The main features of WCOMM, like
communication among components, messages, interfaces, data-types,
types of components, activities, etc., are described in [12].

(2) A component framework (FraCC) that provides the runtime
support for executing the component-based application modeled
with WCOMM. FraCC stands for Framework for Concurrent
Components, since its main characteristic is that it provides user with
full control over concurrency features of the application (number of
processes, threads and computational load assigned to each thread).
That is, FraCC provides control over the deployment of the application.
FraCC has been developed in C++ and integrated into C-Forge.

Taking into account the application requirements, the application
developer designs the specific application using the architectural
component-oriented modeling language WCOMM. WCOMM
comprises three kind of models: textual definition of the interfaces,
datatypes, and activities of the applications, graphical modeling of
simple components (with structure and behavior), and graphical
definition of the application architecture by connecting ports of
simple components. WCOMM enables users to define in different
files (models) different aspects of the application. This loose coupling
allows different developers work in different aspects of the system.
Figure 4 shows a screen-shot of the first and last kind of WCOMM
models, while figure 5 shows the definition of the Filter component
as a white-box.

Once the application has been modeled, the developer executes
the associated model transformations in order to generate a FraCC
deployment model. This transformation configures FraCC with default
parameters that can be modified by the application developer, i.e., the
default assignation of concurrent regions to threads, and hides the
framework implementation complexity from the user. FraCC provides
explicit control over concurrency, mainly the number of processes
and threads, their computational load and timing characteristics,
which can be easily modified e.g. after temporal analysis. Unlike most
frameworks, these tasking issues are very important in order to be
able to perform real-time analysis later. FraCC also facilitates the

Figure 3: A selective vision system for cataloguing and maintenance of
road elements.

http://dx.doi.org/10.15344/ijcse/2016/107

Citation: Álvarez B, Navarro PJ, Alonso D, Sánchez P, Iborra A (2016) ViSel-TR: A Novel Approach for Developing Component-based Vision Systems Working
in Unstructured Environments. Int J Comput Softw Eng 1: 107. doi: http://dx.doi.org/10.15344/ijcse/2016/107

integration of existing algorithms by allowing users to develop each
of the component activities (with the algorithms) separately from the
framework.

Figure 6 shows a screen-shot of a feasible deployment configuration
for the WCOMM application, where the components are deployed
into two computational nodes, one for executing the components
related to computer vision tasks, while the other is in charge of

Int J Comput Softw Eng IJCSE, an open access journal
 Volume 1. 2016. 107

 Page 7 of 10

the GUI, Filter and Non-Visual Sensors components. One node
comprises one process with two execution threads, while the other
isolates the execution of the GUI from the rest of the assigned
components. It can also be seen that the three regions of the Filter
component will be executed by the same thread, though FraCC does
not impose that all the regions of a component are executed by the
same thread. It does only impose that all the regions of a component
must be executed by threads belonging to the same process.

Figure 4: WCOMM models showing the application architecture (on the left) and the interfaces and activities definitions (on the right) of the
application for cataloguing and maintenance of road elements. The details of the implementation of the Filter component are shown in Figure 5.

Figure 5. WCOMM model of the Filter component (see also Figure 4), showing the three orthogonal regions: Sensor, Algorithm and Update GUI. It’s
also possible to see which ports are employed by the algorithms executed in each state of the component.

http://dx.doi.org/10.15344/ijcse/2016/107

Citation: Álvarez B, Navarro PJ, Alonso D, Sánchez P, Iborra A (2016) ViSel-TR: A Novel Approach for Developing Component-based Vision Systems Working
in Unstructured Environments. Int J Comput Softw Eng 1: 107. doi: http://dx.doi.org/10.15344/ijcse/2016/107

Once the FraCC model is finished, the application is executed by
automatically instantiating both the WCOMM and FraCC models by
a model loader. Instead of generating final code, a model loader is
in charge of reading directly the WCOMM models and interpreting
the components definitions that will be automatically created, and
connected in FraCC processes and threads. Thus, the models are
interpreted (being FraCC and their associated tools the interpreter),
and they may evolve independently of the code of the algorithms.

FraCC was developed to be mostly used for the development of
applications with concurrency and hard real-time requirements
and was designed so that applications implemented with it could
be temporally analyzed. Taking the FraCC model of a specific
application as starting point, a temporal model can be extracted by an
automatic transformation. This model enables an early verification of
concurrency and temporal requirements using the Cheddar analysis
tool [37]. The user can modify the application deployment (the FraCC
model) after performing a temporal analysis without changing the
original WCOMM design.

For developing the four scenarios mentioned, we have used as
platform VEGO (Figure 7). VEGO is a autonomous vehicle developed
by the Technical University of Cartagena and it is used to teaching and
research tasks. VEGO is composed of three subsystems: (1) a sensors
subsystem which include: a LIDAR sensor that it supplies the capacity
to detect objects by means, an Inercial Measurement Unit (IMU) for
positioning and navigation tasks, a set of ultrasonic sensors located
around the vehicle they are used to detect objects in short distances,
etc, (2) onboard computer subsystem which main function is to
execute the software subsystem with RT capacities, for this purpose
we used WxWorks operating system, and (3) the software subsystem
is used to implement ViSelTR architecture.

Int J Comput Softw Eng IJCSE, an open access journal
 Volume 1. 2016. 107

 Page 8 of 10

Conclusions

In this work, a novel approach for developing vision systems has
been presented and the main objectives have been achieved thanks to
the design of a general architecture for use of different development
paradigms offered by software engineering. Conclusions from this
work can be drawn from two points of view: that of the benefits
obtained in terms of software development (component modeling
and reuse), software execution and configuration; and that of the
performance benefits obtained in computer vision applications
working on unstructured environments.

C-Forge combines two software engineering paradigms:
component-based software development (CBSD) and model-driven
software development (MDSD).

With C-Forge, the application developer designs the application
using an architectural component-oriented modeling language,
WCOMM, that helps him model component behavior by using
finite-state machines. These components can be reused in the same
or different application, and finite-state machines are very suitable for
modeling reactive systems. Both elements provide designers high-level
primitives with which to model their application, without worrying
about the number of classes or methods that should be created to
execute it. That will come in a further step. Also, both elements can
be easily edited and changed through the provided graphical editors.
Once the application has been modeled, the developer executes the
associated model transformations and a FraCC model is generated so
that the application can be executed. Thus, thanks to C-Forge, ViSel-
TR separates component design (architecture, WCOMM model)
from application execution (deployment, FraCC model) and the user
can modify the application deployment after performing a temporal
analysis without changing the WCOMM model. In fact, we were able
to develop several versions of the application components quickly by
reusing previous designs and slightly modifying their ports and states.

On the other hand, as mentioned before, ViSel-TR is based on the
definition of scenarios in which the system can be. The approach
ensures compliance with all requirements and the choice of each

Figure 6: FraCC deployment model for the road elements application.

Figure 7: VEGO platform.

http://dx.doi.org/10.15344/ijcse/2016/107

Citation: Álvarez B, Navarro PJ, Alonso D, Sánchez P, Iborra A (2016) ViSel-TR: A Novel Approach for Developing Component-based Vision Systems Working
in Unstructured Environments. Int J Comput Softw Eng 1: 107. doi: http://dx.doi.org/10.15344/ijcse/2016/107

scenario depends on a number of variables that are independent of
the visual information captured by different cameras. With this idea,
the vision system is capable of processing visual information in real-
time because the selected scenario is previously known, and thus it is
possible to select the set of objects the system must look for, as well
as the algorithms (and their configuration parameters) that are most
appropriate to detect them depending on the environment conditions.
In our tests, this resulted in a reduction of around 30% objects to be
searched for in the images taken by the cameras, and a higher rate of
detection, since the algorithms were tailored to the outdoor lighting
conditions.

Thus, we can conclude that the main objectives of ViSel-TR
have been achieved: our vision applications are very efficient and,
furthermore, the components reusability has been incremented.
ViSel-TR has demonstrated its effectiveness in improving software
productivity and quality.

Future Works

We envisage conducting an evaluation of the approach and C-Forge
toolset involving professional software developers, once the tools are
more tightly integrated and tested.

Currently, there are other technologies can be considered for
developing computer vision applications. Over the last couple of years,
the Internet of Things and Services (IoTS) is offering new possibilities
for environmental information sensing, processing and analysis by
mean of connecting intelligent devices, thereby making way to new
automation and control applications and services in numerous sectors
[38]. All sectors where IoTS has been applied share the common aim
of increasing efficiency, reducing costs, improving decision making,
saving energy and protecting the environment [39].

Therefore, vision systems, which use information from different
sensors in order to identify objects, are an interesting field to take
advantage of in IoTS applications. The miniaturization of such
sensors, together with the expansion of communication networks,
have enabled intelligence and connectivity to be incorporated into
real-world objects. Thus, any object can be a source of data and its
behavior can be monitored in real time. Furthermore, business is
clearly starting to invest in smart services. Increasingly, companies
are turning to external providers who can offer powerful solutions
based on shared service centers that allow their clients to get on with
their core business. There is a wide variety of service providers (data
storage, Web Services, etc.) among which it should be noted Google
App Engine [40]. This option has the disadvantage of requiring the
use of proprietary software. Google App Engine is in full growth and
has the advantage of lower prices, provides useful additional services
such as searches and image treatment, etc.

Other interesting alternative in which we are currently working on
is the FI-WARE project in Europe: an open challenge to dedicated core
Future Internet (FI) technology [41]. FI-WARE is being developed
as part of the Future Internet Public Private Partnership (FI-PPP)
program launched by the European Commission in collaboration
with the ICT Industry. This platform aims to facilitate the creation
of innovative applications by lowering the costs and complexity of
serving large numbers of users globally and handling data at a large
scale.

FI-WARE is open [42] and based upon Generic Enablers (GEs) which
offer reusable and commonly shared functions serving a multiplicity

Int J Comput Softw Eng IJCSE, an open access journal
 Volume 1. 2016. 107

 Page 9 of 10

of Usage Areas across various sectors. The platform offers a catalogue
in which you will find all the information you need as a developer
to start using a Generic Enabler Implementation. Some of the
Generic Enablers implementations that are present in the FI-WARE
catalogue are grouped into the following domains of knowledge: (1)
Applications&Services, (2) Cloud Computing, (3) Internet of Things,
(4) Data Context Management, (5) Interface to Networks and Devices,
and (6) Security. Using FIWARE, some GEs can implement different
WCOMM model components.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work has been partially supported by the Spanish Ministry
of Economy and Competitiveness projects ViSel-TR (ref. TIN2012-
39279), cDrone(ref. TIN2013-45920-R), and the “Research
Programme for Groups of Scientific Excellence at Region of Murcia"
of the Seneca Foundation (Agency for Science and Technology of
the Region of Murcia – 19895/GERM/15). Diego Alonso thanks the
Spanish Ministerio de Educación, Cultura y Deporte, Subprograma
Estatal de Movilidad, Plan Estatal de Investigación Científica y
Técnica y de Innovación 2013-2016 for grant CAS14/00238.

References

1.	 Chella A, Cossentino M, Gaglio S, Sabatucci L, Seidita V (2010) Agent-
oriented software patterns for rapid and affordable robot programming.
Journal of Systems and Software 83: 557 – 573.

2.	 Lau K, Wang Z (2007) Software component models. IEEE Transactions on
Software Engineering 33: 709-724.

3.	 Shaw M, Clements P (2006) The Golden Age of Software Architecture.
IEEE Software 23: 31-39.

4.	 OMG. CORBA Component Model Specification, OMG Available
Specification, Version 4.0, formal/2006-04-01.

5.	 Medvidovic N, Taylor R (2000) A classification and comparison framework
for software architecture description languages. IEEE Transactions on
Software Engineering 26: 70-93.

6.	 Stahl T, Völter M (2006) Model-Driven Software Development: Technology,
Engineering, Management. Wiley.

7.	 Bézivin J (2005) On the unification power of models. Journal of Systems
and Software 4 : 171-188.

8.	 Mens T, van Gorp P (2006) A taxonomy of model transformation. Electronic
Notes in Theoretical Computer Science 152: 125-142.

9.	 OMG (2008) MDA success stories.

10.	 Fayad M, Schmidt D, Johnson R (1999) Building Application Frameworks:
Object-Oriented Foundations of Framework Design. John Wiley & Sons.

11.	 Clements P, Northrop L (2001) Software Product Lines: Practices and
Patterns. Addison-Wesley Professional.

12.	 Alonso D, Ortiz FJ (2013) C-FORGE: Model-Driven toolchain for
Component-Based Software.

13.	 Blair G, Coupaye T, Stefani JB (2009) Component-based architecture: the
Fractal initiative. Annals of Telecommunication, Springer-Verlag 64: 1-4.

14.	 Atkinson C, Bostan P, Brenner D, Falcone G, Gutheil M, et al. (2008)
Modeling Components and Component-Based Systems in KobrA. The
Common Component Modeling Example, Lecture Notes in Computer
Science 5153: 54-84.

http://dx.doi.org/10.15344/ijcse/2016/107
http://www.sciencedirect.com/science/article/pii/S0164121209002787
http://www.sciencedirect.com/science/article/pii/S0164121209002787
http://www.sciencedirect.com/science/article/pii/S0164121209002787
http://ieeexplore.ieee.org/document/1605176/
http://ieeexplore.ieee.org/document/1605176/
http://www.omg.org/spec/CMM/4.0/PDF
http://www.omg.org/spec/CMM/4.0/PDF
http://www.ics.uci.edu/~taylor/documents/2000-ADLs-TSE.pdf
http://www.ics.uci.edu/~taylor/documents/2000-ADLs-TSE.pdf
http://www.ics.uci.edu/~taylor/documents/2000-ADLs-TSE.pdf
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470025700.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470025700.html
http://www.omg.org/mda/products_success.htm
http://www.omg.org/mda/products_success.htm
http://www.omg.org/mda/products_success.htm
http://www.wiley.com/legacy/compbooks/frameworks/toc.htm
http://www.wiley.com/legacy/compbooks/frameworks/toc.htm
http://findbookshere.net/es/Software-Product-Lines-Practices-and-Patterns/p1855418405/
http://findbookshere.net/es/Software-Product-Lines-Practices-and-Patterns/p1855418405/
http://www.dsie.upct.es/cforge
http://www.dsie.upct.es/cforge
http://link.springer.com/article/10.1007/s12243-009-0086-1
http://link.springer.com/article/10.1007/s12243-009-0086-1
http://link.springer.com/chapter/10.1007%252F978-3-540-85289-6_4
http://link.springer.com/chapter/10.1007%252F978-3-540-85289-6_4
http://link.springer.com/chapter/10.1007%252F978-3-540-85289-6_4
http://link.springer.com/chapter/10.1007%252F978-3-540-85289-6_4

Citation: Workman M (2016) Diagnosing Post Traumatic Stress Disorder: Using a Physiological Computing Method and Apparatus. Int J Comput Softw Eng 1:
106. doi: http://dx.doi.org/10.15344/ijcse/2016/106

15.	 Bures T, Hnetynka P, Plasil F (2006) SOFA 2.0: Balancing Advanced
Features in a Hierarchical Component Model. Fourth International
Conference on Software Engineering Research, Management and
Applications (SERA’06).

16.	 Carlson J, Håkansson J, Pettersson P (2006) Save CCM: An analysable
component model for real-time systems. Electronic Notes in Theoretical
Computer Science 160: 127-140.

17.	 van Ommering R, van der Linden F, Kramer J, Magee J (2000) The koala
component model for consumer electronics software. IEEE Computer 33:
78-85.

18.	 Childs A, Greenwald J, Jung G, Hoosier M, Hatcliff J (2006) CALM and
Cadena: metamodeling for component-based product-line development.
IEEE Computer 39: 42-50.

19.	 Artist-ESD, ArtistDesign - European Network of Excellence on Embedded
Systems Design 2008-2011.

20.	 OpenEmbeDD, 2008-2011. OpenEmbeDD project, Model Driven
Engineering open-source platform for Real-Time & Embedded systems.

21.	 Autosar, AUTOSAR: Automotive Open System Architecture 2008-2011.

22.	 Fairbanks G, Garlan D, Scherlis W (2006) Design fragments make using
frameworks easier. In: Proc. of the 21st annual ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages, and Applications
(OOPSLA’06), 75-88.

23.	 Antkiewicz M, Czarnecki K, Stephan M (2009) Engineering of framework-
specific modeling languages. IEEE Transactions on Software Engineering
35: 795-824.

24.	 Navarro P, Suardiaz J, Alcover P, Borraz R, Mateo A, Iborra A (2006)
Teleoperated Visual Inspection System for Hull Spot-Blasting. Proceedings
in IEEE Industrial Electronics, 32ndAnnual Conference, IECON’06.

25.	 Navarro P, Iborra A, Fernández C, Sánchez P, Suardiaz J (2010) A Sensor
System for Detection of Hull Surface Defects. Sensors 10: 7067-7081.

26.	 Navarro P, Fernández C, Weiss J, Egea-Cortines M (2012) Development of
a Configurable Growth Chamber with a Computer Vision System to Study
Circadian Rhythm in Plants. Sensors 12: 15356-15375.

27.	 Vicente-Chicote C, Toledo A, Sánchez P (2005) Image Processing
Application Development: From Rapid Prototyping to SW/HW Co-
Simulation and Automated Code Generation, 2nd Iberian Conference on
Pattern Recognition and Image Analysis, LNCS 3522: 659-666.

28.	 Gomaa H (2000) Designing Concurrent, Distributed, and Real-Time
Applications with UML. Object Technology. Addison-Wesley.

29.	 Bradski G, Kaehler A (2008) Learning OpenCV: Computer Vision with the
OpenCV Library, 1st ed. O’Reilly Media, Inc.

30.	 VXL 2013.

31.	 Gandalf, Apr. 2013.

32.	 Khoros Pro, 2004.

33.	 Shaw M, Garlan D (1996) Software Architecture: Perspectives on an
Emerging Discipline, Englewood Cliffs, NJ: Prentice Hall.

34.	 Shen C, Fels S, Little JJ (2007) OpenVL: Towards A Novel Software
Architecture for Computer Vision, IEEE Conference on Computer Vision
and Pattern Recognition.

35.	 Afrah A, Miller G, Fels S (2009) Vision System Development Through
Separation of Management and Processing. Workshop on Multimedia
Information Processing and Retrieval, San Diego, California, USA.

36.	 Weems CC (1991) Architectural requirements of image understanding with
respect to parallel processing. Proceedings of the IEEE 79: 537-547.

37.	 Singhoff F, Legrand J, Nana L, Marcé L (2004) Cheddar: a flexible real
time scheduling framework. Proceedings of the 2004 Annual ACM SIGAda
international conference on Ada: The engineering of correct and reliable
software for real-time & distributed systems using Ada and related
technologies (SIGAda’04); 1-8.

38.	 Bankinter Foundation (2011)The Internet of Things. XV Publication of
Bankinter Foundation.

Int J Comput Softw Eng IJCSE, an open access journal
 Volume 1. 2016. 107

 Page 10 of 10

39.	 Zhang L (2011) An IoT System for Environment Monitoring and Protecting
with Heterogeneous Communication Networks. Proceedings of6th
International ICST Conference on Communication and Networking.

40.	 Google, 2013.

41.	 FI-WARE Consortium, 2013,

42.	 Usländer T, Watson K (2009) The Growing Importance of the Open
Service Platforms for the Design of environmental Information Space. In
Proceedings of the European Conference Towards e Environment.

http://dx.doi.org/10.15344/ijcse/2016/106
http://www.sciencedirect.com/science/article/pii/S1571066106003811
http://www.sciencedirect.com/science/article/pii/S1571066106003811
http://www.sciencedirect.com/science/article/pii/S1571066106003811
http://www.artist-embedded.org/
http://www.artist-embedded.org/
http://openembedd.org/home_html
http://openembedd.org/home_html
http://www.autosar.org/
http://gsd.uwaterloo.ca/node/62
http://gsd.uwaterloo.ca/node/62
http://gsd.uwaterloo.ca/node/62
https://www.ncbi.nlm.nih.gov/pubmed/23202214
https://www.ncbi.nlm.nih.gov/pubmed/23202214
https://www.ncbi.nlm.nih.gov/pubmed/23202214
http://repositorio.bib.upct.es:8080/dspace/bitstream/10317/357/1/IbPRIA%202005%20-%20LNCS%203522%20-%20pp%20659-666.pdf
http://repositorio.bib.upct.es:8080/dspace/bitstream/10317/357/1/IbPRIA%202005%20-%20LNCS%203522%20-%20pp%20659-666.pdf
http://repositorio.bib.upct.es:8080/dspace/bitstream/10317/357/1/IbPRIA%202005%20-%20LNCS%203522%20-%20pp%20659-666.pdf
http://repositorio.bib.upct.es:8080/dspace/bitstream/10317/357/1/IbPRIA%202005%20-%20LNCS%203522%20-%20pp%20659-666.pdf
http://www.amazon.com/Designing-Concurrent-Distributed-Real-Time-Applications/dp/0201657937
http://www.amazon.com/Designing-Concurrent-Distributed-Real-Time-Applications/dp/0201657937
http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/1449314651
http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/1449314651
http://vxl.sourceforge.net/
http://gandalf-library.sourceforge.net/
http://www.khoral.com/
http://www.amazon.com/Software-Architecture-Perspectives-Emerging-Discipline/dp/0131829572
http://www.amazon.com/Software-Architecture-Perspectives-Emerging-Discipline/dp/0131829572
http://openvl.org/papers.php
http://openvl.org/papers.php
http://openvl.org/papers.php
https://www.linkedin.com/pub/amir-afrah/0/a7a/144
https://www.linkedin.com/pub/amir-afrah/0/a7a/144
https://www.linkedin.com/pub/amir-afrah/0/a7a/144
E:\Graphy%20PDF\IJCSE\IJCSE%20Author%20Proof\Volume-2016\Issue-2\IJCSE-107\:%20http:\www.easinet.cn\en\publications.htm
E:\Graphy%20PDF\IJCSE\IJCSE%20Author%20Proof\Volume-2016\Issue-2\IJCSE-107\:%20http:\www.easinet.cn\en\publications.htm
E:\Graphy%20PDF\IJCSE\IJCSE%20Author%20Proof\Volume-2016\Issue-2\IJCSE-107\:%20http:\www.easinet.cn\en\publications.htm
https://appengine.google.com/
http://www.fi-ware.eu/
http://academic.research.microsoft.com/Author/17927604/thomas-uslander
http://academic.research.microsoft.com/Author/17927604/thomas-uslander
http://academic.research.microsoft.com/Author/17927604/thomas-uslander

