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Introduction

Platinum compounds, the DNA-targeting drugs, are effective 
and have been widely used in clinical settings. However, acquired 
resistance to platinum-chemotherapy is a major treatment obstacle 
affecting life-quality of patients and therapeutic outcomes, often 
leading to treatment failure [1,2]. Studies show that cells treated 
with genotoxic agents swiftly respond by activating DNA-damage 
checkpoint response. Two primary pathways are initiated in response 
to DNA damage. One is mediated by the ATM-Chk2 axis, the other by 
the ATR-Chk1 axis. The ATM-Chk2 pathway responds primarily to 
DNA double-strand breaks, whereas the ATR-Chk1 pathway mainly 
responds to replication-associated DNA lesions [3,4]. 

Drug-resistance is multifactorial in nature. Its mechanisms involve 
a complex network of cellular pathways and molecular changes 
with numerous cross-interactions at different stages. Resistance to 
platinum-compounds may occur due to alterations of drug influx 
and efflux; altered activation or metabolism; modified drug-induced 
damage or drug-targets; and/or evasion of apoptosis [5,6]. To date, 
however, no successful chemosensitizers or diagnostic/prognostic 
assays for the prediction of therapy response have been developed.

Transcription factor p53 plays a key role in the DNA damage 
response to genotoxic stress. Wild type p53 protein has a role in the 
inhibition of DNA synthesis following DNA damage, suggesting 
a mechanism for how the loss of wild-type p53 may contribute to 
tumorigenesis [7,8]. Mutations of p53 have been associated with 
resistance to platinum-based chemotherapy and shortened survival 
in ovarian cancer [9].

Checkpoint kinase 2 (Chk2) resides at the heart of the DNA 
damage/repair pathway and is responsible for the maintenance of 
mammalian genomic integrity. Studies suggest that Chk2 inhibition in 
combination with genotoxic agents might have therapeutic value [10-
12]. Inhibition of Chk2 expression reduces DNA-damage-induced 
cell cycle checkpoints and enhances apoptosis in p53-defective HEK-
293 cells [11]. Molecular or genetic targeting of Chk2 prevents the 
release of survivin from mitochondria and enhances DNA-damage 
-induced tumor cell apoptosis, thus inhibiting in vivo growth of 
resistant tumors, providing a rational approach for treatment [13,14].

NER Pathway is Associated with Platinum Resistance 
Phenotype

Nucleotide excision repair (NER) is the critical DNA repair pathway.
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It appears to be the major mechanism for removal of platinum-
induced DNA adducts, resulting in resistance to platinum drug 
therapy. NER enzyme-complexes remove bulky, transcription-
blocking lesions caused by endogenous and environmental insults to 
DNA, including platinum-induced adducts [15-17]. NER-defective 
cells are hypersensitive to platinum drugs, and enhanced DNA repair 
has been implicated in the cisplatin-resistant phenotype [18-20]. The 
major steps in the NER process are damage recognition, dual-incision 
of damaged DNA (on both 5' and 3' sides of the lesion), removal of 
incised nucleotides and deoxyribose, and gap fill-in synthesis [21-26]. 

ERCC1 Expression Predicts Chemosensitivity

ERCC1 is an essential component of the NER pathway, which is 
the only known mechanism for the removal of intrastrand/interstrand 
bulky DNA-adducts. Studies indicate that high levels of ERCC1 
expression reflect elevated DNA repair capacity and are associated 
with clinical resistance to platinum-based chemotherapy [18,19,27].

In vitro studies suggest that ERCC1 expression in cisplatin-
hypersensitive, repair-deficient cells is 50- to 30-fold lower than in 
platinum-resistant cells [28]. Overexpression of ERCC1 and other 
NER genes is associated with increased DNA repair activity and 
clinical resistance to platinum treatment [29,30]. Data from in vitro 
systems have shown that suppressed ERCC1 expression by siRNA 
enhances or restores sensitivity of human cancer cells to cisplatin 
[31]. Other studies also reported that enhanced DNA repair of 
platinum-DNA adducts or removal of cisplatin-induced interstrand 
and intrastrand crosslinks has been observed in cisplatin-resistant 
cell models, and DNA repair inhibitors in some models can potentiate 
cisplatin cytotoxicity [32-34]. These findings have significant 
therapeutic implications.

Abstract

Tumor drug resistance remains a major obstacle in the treatment of cancers. Increased DNA repair 
is a primary mechanism of acquired resistance to platinum chemotherapy. TP53, Chk2 and ERCC1 of 
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Figure 1: shows the clinical response to cisplatin and the expression of NER genes in tissues of ovarian cancer patients. Panels in A 
of the two figures show 4 genes: ERCC1, XPA, XPB and CSB expressed at low levels in platinum-sensitive tumors (responders). The 
same genes expressed at high levels in platinum-resistant patients are shown in the panels in B [27]. These data suggest that clinical 
resistance to platinum therapy is positively associated with expression of human DNA repair gene ERCC1 and other NER genes.

Dabholkar M et al, J Clin Invest. 1994

Li Q et al. J. Biol. Chem., 1998

Figure 2: In vitro, the platinum-resistant ovarian cancer A2780/CP70 cells treated with cisplatin showed a 6-fold increase in ERCC1 
mRNA level (Figure 2 left panel). This increased mRNA is caused by increased transcription (Figure 2 middle panel) and by 
prolonged mRNA half-life (Figure 2 right panel). The ERCC1 mRNA half-life is increased or prolonged 8 hours in the cisplatin-
treated cells compared to untreated control cells [34].
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Functional Cis-Elements, AP1 and MZF1, in the ERCC1 
Promoter Region Responding to Cisplatin Stimulation

In order to control ERCC1 expression, we performed functional 
analysis of ERCC1 promoter region by Electrophoresis Mobility Shift 
Assay and revealed two cis-elements AP1 and MZF1 [35]. In response 
to cisplatin stimulation, the AP1 site and MZF1 site formed DNA-
protein complexes. Furthermore, after cisplatin treatment, binding 
activities of AP1 increased and binding activities of MZF1 decreased 
during time course. This suggests that AP1 plays a role as an activator 
and MZF1 as a repressor. We also measured mRNA expression of AP1 
and MZF1 affected by cisplatin and observed that both c-jun and c-fos 
mRNA levels were increased after cisplatin exposure. In contrast, 
MZF1 mRNA decreased nearly 75% at 48 hours after cisplatin 
treatment (data not shown) [34,35].

Put together, our data suggest that within the ERCC1 promoter, the 
region of -220 to -110 is essential to constitutive ERCC1 expression. 
And a more forward upstream region containing activator AP1 and 
repressor MZF1 binding sites is responsible for cisplatin-induced 
ERCC1 upregulation. In other words, AP1 and MZF1 are the cis-
elements reacting to cisplatin stimulation. In response to cisplatin 
treatment, decreased MZF1 and increased AP1 binding activities 
appear to be the leading mechanism of up-regulation of ERCC1 
expression [34,35].

ERCC1 SNP Serves as a Prognostic Marker

In 1997, our group discovered a significant single nucleotide 
polymorphism (SNP) in the ERCC1 gene (GenBank Acc # AF001925). 
We identified a C to T change at codon 118 in Exon 4 of ERCC1 
gene. This change converts a common codon usage to an infrequent 
codon usage, reducing frequency of use 2-fold. We hypothesized that 
this SNP would be associated with reduced ERCC1 translation and 
improved response to platinum chemotherapy [36].

The ERCC1 SNP has been shown by other researchers as an 
important biomarker associated with platinum sensitivity and 
predicts better overall survival of patients with several cancers 
treated with platinum-combination therapy. Specifically, following 
studies in advanced non-small-cell lung cancer patients, Isla and 
colleagues concluded that patients homozygous for the ERCC1 118 
C allele demonstrated a significantly better survival. They suggest that 
ERCC1 SNP assessment could be an important component of tailored 
chemotherapy trials [37]; Ryu et at indicated that median survival 
time in patients showing C/C genotype of ERCC1 polymorphism 
was 486 days, which was significantly different from the 281 days 
of patients with the variant genotype (T/T or C/T; P = 0.0058) [38].
Smith et al. suggested that the C/C genotype at codon 118 may benefit 
from the combination of platinum and paclitaxel in ovarian cancer 
patients [39].

Wild-Type p53, a Monitor of DNA Damage, Plays a Critical Role 
in Chemotherapy

In 1994, Lowe and colleagues studied p53 status and the efficacy 
of chemotherapy in vivo. They found that p53 mutations were 
detected in resistant or relapse tumor-bearing animals. In response to 
radiotherapy/chemotherapy, MT-p53 mice responded poorly to the 
initial treatments, comparing to WT-p53 group, indicating that p53 
mutation is associated with treatment resistance and tumor relapse 
[40]. These findings suggest a basis for the association between p53 
mutation and drug resistance/poor prognosis; and between p53 
mutation and tumor relapse in patients during chemotherapy.

Platinum Drugs Induce p53 Phosphorylation, which 
Modulates Chk2 Activation

In an investigation of cisplatin-induced molecular signature in 
cisplatin-sensitive ovarian cancer A2780 cells, we found that several 
kinases of the DNA-damage repair pathway were activated. One 
hour after drug exposure we observed phosphorylations of p53 at 
serine 15 and serine 20, and Chk2 at threonine 68, and increased 
proteins of ATM, p53, p48 and p21. Of note, cisplatin induced p53 
phosphorylation was 12-h earlier than Chk2 phosphorylation, which 
suggests that Chk2 is activated and regulated by p53 in a wild-type p53 
cell model [12]. In another investigation of dicycloplatin-activated 
DNA-damage response pathway in the same cells, two major factors 
- p53 and Chk2 - were activated in a manner similar to cisplatin-
induction, suggesting that the molecular mechanism of dicycloplatin 
anti-cancer activity is similar to cisplatin [41].

Overexpression of p53 Increases Chk2 Phosphorylation in 
Wild-Type p53 Cells but Not in p53-Null Cells

To investigate our hypothesis that only wild-type p53 phenotype 
possesses the p53 function, cDNA-transfection was performed in both 
wild-type p53 A2780 and p53-null SKOV3 cells. Overexpressed p53 
gene increased cisplatin-induced Chk2 phosphorylation in the wild-
type p53 cell model. It doubled the amount of Chk2 phosphorylation 
48-h after drug treatment (Figure 3A). In contrast, western analysis 
showed no effect on Chk2 phosphorylation by cDNA transfection in 
p53-null SKOV3 cells (Figure 3B). In other words, transfection of p53 
in MT-p53 cells failed to alter Chk2 activation [12].
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A2780 (wild-type p53)

SKOV3 (p53-null)

Figure 3: Overexpression of p53 increases chk2 phosphorylation in 
wild-type p53 cells but not in p53-null cells.

Liang XB, et al. Chemotherapy Research and Practice: Platinum 
Analogues in Chemotherapy, 2011
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Inhibition of p53 by Specific siRNA Inhibits Chk2 
Phosphorylation

To confirm the above observations, we performed p53 knock-off 
siRNA assays and measured Chk2 expression. As shown in Figure 4, 
in cells not treated with cisplatin, the siRNA to human p53 produced a 
decrease of phosphorylated Chk2, compared to the nonspecific siRNA-
treated control. This decreased level may reflect a constitutive level of 
activated Chk2 that is normally regulated by p53. Cells transfected 
by specific siRNA to p53 and treated with cisplatin resulted in a great 
reduction of phosphorylated Chk2 at Thr-68, suggesting that p53 
modulates 68-threonine phosphorylation of Chk2 [12].

These results indicate that in specific conditions Chk2 activation 
is regulated by p53 in response to cisplatin treatment in wild-type 
p53 cells but not in p53-deficient cells. Cells without wild- type p53 
could survive, conceivably, via an alternative pathway in response to 
cisplatin treatment. Therefore, we strongly suggest that any research 
involving the p53 gene should determine its mutational status due to 
functional differentiation between wt-p53 and p53-mutant.
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Liang XB, et al. Chemotherapy Research and Practice: Platinum 
Analogues in Chemotherapy, 2011.
Figure 4: p53 knock-off siRNA assays and measured Chk2 expression.

Figure 5: summarizes the mechanism of cisplatin resistance from our studies: cisplatin activates the DNA damage repair pathway, with marked 
Chk2 phosphorylation and ERCC1 overexpression. Chk2, the upstream regulator, is modulated by p53.  Within the process of cisplatin-induced 
cell cycle arrest, DNA-adduct repair protein ERCC1 increases and contributes to the increase of cisplatin resistance. Two transcriptional factors 
AP1 and MZF1 can modulate the ERCC1 expression [42].

Yu JJ, et al. Platinum and Other Heavy Metal Compounds in Cancer Chemotherapy, 2009.
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