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Introduction

Cancer is one of the most feared of all human diseases, and the 
need to develop high-efficacy and low-toxicity cancer drugs is an 
important field that is being actively studied. Consecutively occurring 
impairments to DNA result in activation of several oncogenes, 
including Myc. In contrast, tumor suppressor genes are inactivated, 
which affects the DNA repair system and disrupts normal apoptosis 
regulation pathways [1]. Myc is a transcriptional regulator with a basic 
helix-loop-helix leucine zipper (bHLH-ZIP) domain that becomes 
functional after dimerization with its obligate partner protein, Max 
[2]. The coiled-coil structure of the Myc-Max heterodimer has a 
palindromic E-box sequence 5'-CACGTG-3' that recruits the DNA 
[3]. Myc interacts with target gene promoters to stimulate or suppress 
transcriptional activity [4]. Overexpression of Myc is involved 
in transformation processes, including proliferation, apoptosis, 
differentiation, and metabolism [5]; however, dysregulation of Myc is 
involved in the vast majority of  human cancers such as lung, pancreatic, 
and colorectal cancer in addition to leukemia and lymphomas 
[6]. Because of its multiple functions, there has been concern that 
targeting Myc-Max/DNA interactions for drug development would 
result in undesirable side effects. However, studies of the dominant-
negative Myc mutant, omomyc, have suggested that pharmacological 
inhibition of Myc results in gentle and reversible effects on normal, 
quick-proliferating tissues [7,8]. Together, these studies suggest that 
Myc inhibition by direct disruption of Myc-Max/DNA or subsidiary 
inhibition of Myc using BET bromodomain inhibitors [9-11] could 
be a feasible restorative method and is on the cutting edge of new and 
focused anticancer drug development. The favored methodology to 
identify possible Myc inhibitors has been to measure obstruction of 
Myc-Max dimerization; however, protein-protein interactions (PPIs) 
within the large surface area (~3,200 Å2) and many binding pockets 
that have not yet been identified are primary hindrances [3]. Despite 
these difficulties, an absolute amino acid substitution may completely 
disturb the dimerization of Myc with Max [3]. Here, we provide 
evidence for the principle that a high-affinity ligand attached to the 
interactional surface may provide additional disruption of Myc-Max 
dimerization. 
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of 10,000 chemicals to discover 10058-F4, a rhodanine scaffold-
containing small molecule that is a potent Myc-Max inhibitor [12]. 
An HL60 human promyelocytic leukemia cell line over-expressing 
Myc was then used to test the efficacy of 10058-F4. Myc-Max/DNA 
binding was interrupted by 10058-F4, with an IC50 value of 49 μM. 
Considering the strong protein-protein interactions involved in Myc-
Max/DNA binding, including strong hydrogen bonding, electrostatic 
interactions, and π–π interactions, we suggest that these results are 
remarkable. From the perspective of medicinal chemists, small 
molecules contain many positive attributes, including the ability to 
substitute several functional groups on the scaffold. In the work by 
Procownik et al., several substituents on the 4-ethylphenyl moiety 
of 10058-F4 were introduced, including 4-chlorophenyl; cyclohexyl; 
3,4-dihydroxyphenyl; and 4-isopropylphenyl moieties; however, 
substituted compounds have not improved the activity of 10058-F4.
Fixing a 4-ethylphenyl group on the left position of 10058-F4 and then 
modifying the right side of the rhodanine core did not significantly 
improve activity. In a follow-up modification, N-methylpiperidinyl 
functionalization of the rhodanine NH group followed by substitution 
with an isopropylphenyl ring resulted in the introduction of 28RH-
NCN-1 and inhibition of Myc binding to DNA that is equivalent 
to 10058-F4 in an in vitro system. However, the inhibitory activity 
increased 2-fold in HL60 whole cells, with an IC50 = 29 μM. Both 
28RH-NCN-1 and 10058-F4 demonstrated concentration-dependent 
inhibition of Myc-Max heterodimer formation in HL60 cells that was 
associated with a decrease in cell proliferation [13].

Work done in the laboratory of Metalloet al. from Georgetown 
University elucidated the interruption mode of 10058-F4 and 10074-
G5 to their target proteins Myc-Max using NMR dynamic structures. 
10058-F4 binds Myc402-412 sequences, whereas 10074-G5 binds
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Myc363-381 sequences [14]. In addition, the nitro group and furazan 
core of 10074-G5 could interact with the positively charged amino 
acid residues, Arg 372 and Arg 362, while the biphenyl group has π-π 
interactions with a hydrophobic region composed of Phe375, Ile381, 
and the side chain methylene moiety of Arg 378. The discovery of two 
free tying sites, each comprising over 10 residues inside a bHLH-ZIP 
domain that is 84 amino acids in length, suggests that sites capable 
of specific small-molecule binding are universal in intrinsically 
disordered proteins [14] (Table 1).

Work by Fletcher et al. identified the Myc inhibitor pharmacophore, 
10074-G5, through a structure-activity relationship (SAR) study. 
10074-G5 is composed of three distinct moieties, including a nitro 
functional group on the top subunit, a benzofurazan core, and a 
2-aminobiphenyl group. Reduction of the nitro group to an amine and 
introduction of several functional groups on the NH2-nitrogen atom 
resulted in loss of inhibitory activity. Modification of the biphenyl 
moiety to phenyl, hydroxyphenyl, cyclohexyl, methoxyphenyl,

bromophenyl, and piperidinyl resulted in no or weak inhibition 
activity; however, introducing a carboxylic acid at the para-position 
on the phenyl ring (compound JY-3-094) increased the potency to 
five times of that observed for the lead compound, with an IC50 of 
33 μM for disruption of Myc-Max heterodimers [15]. In a follow-up 
paper to their early work, Fletcher et al. introduced ester functionality 
to the para-position of JY-3-094, which has poor cell permeability. 
The prodrug molecule JY-3-094 and its derivatives warrant further 
development of small-molecule Myc-Max inhibitors [16]. Recently, 

Fletcher et al. disclosed the active and stable (half-life in cell > 17 h) 
Myc-Max inhibitor 3jc48-3 [17], which has an additional hydrophobic 
group on the phenyl ring of the prodrug molecule JY-3-094. Treatment 
of HL60 and Daudi cells with 3jc48-3 repressed proliferation with  
single-digit micromolar IC50 values in a way that corresponded to 
the intracellular interruption of Myc-Max heterodimers. In addition, 
Fletcher et al. developed a novel and direct Myc inhibitor, JKY-2-
169, that is distinctly different from their previous compounds. This 
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Table 1: Small molecule inhibitors of c-Myc
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new molecule contains a bis-benzamide core via synthetic α-helix 
mimetics. JKY-2-169 perturbs Myc-Max heterodimer binding to 
approved E-box DNA sequences without producing protein-protein 
dissociation.The resulting inhibition of Myc in proliferating cells, both 
in vitro and in vivo, leads to cell cycle arrest and apoptosis. Compared 
with previous Myc inhibitors, JKY-2-169 does not disrupt Myc-Max 
heterodimers in cells, but specifically inhibits a Myc-dependent 
reporter. Consequently, JKY-2-169 binds an α-helical region of Myc 
and decreases the ability of theMyc-Max heterodimer to bind DNA 
without provoking the dissociation of Myc-Max heterodimers. Several 
bis-benzamide derivatives exhibited a 2-fold or greater selectivity for 
Myc-Max heterodimers over Max-Max homodimers with IC50 values 
of 5.6 μM [18].

Vogt et al. isolated and validated the first nonpeptidic Myc-Max 
inhibitors from an in-house peptidomimetics library using an ELISA 
and electrophoretic mobility-shift assay (EMSA). Among these 
inhibitors, IIA6B17 containing an isoindoline scaffold antagonized 
the Myc-Max/DNA ternary complex with an ELISA IC50 value of 
125 μM and EMSA IC50 value of 40 μM [19]. Moreover, IIA6B17 
hindered Myc-induced oncogenic transformation of chicken embryo 
fibroblast (CEF) cells (IC50 = 20 μM). In addition, the lead molecules 
developed by Vogt et al. was discovered to inhibit c-Jun, inferring that 
their mechanisms might involve the bHLH-ZIP domain that is found 
in many transcription factors. It is possible that these compounds 
restrain the oncogenic activity of Myc indirectly by stabilizing Myc-
Max homodimers and thereby diminishing the concentration of Max 
accessible for heterodimerization by Myc [20]. Together with Boger et 
al., Vogt and colleagues substituted the isoindoline-5,6-dicarboxylate 
scaffold of IIA6B17 to a pyrrolidine-3,4-dicarboxylate group (labeled 
mycmycin-1 and mycmycin-2), resulting in inhibition of Myc-induced 
oncogenic transformation in CEF cells. The second generation of Myc 
inhibitors designed by this group is 10-fold more potent than the 
parent compound, IIA6B17. Notably, mycmycin-1 and mycmycin-2 
do not inhibit the oncogenic transcription factor c-Jun.

Janda, Vogt, and colleagues developed a compound library based 
on a reciprocal hydrophobic and planar naphthalene scaffold. Forty 
small molecules were screened from 285 compounds through a 
fluorescent resonance energy transfer screening assay. Among the 40 
screened molecules, 4 effectively inhibited Myc-Max/DNA binding, 
including NY2276 and NY2267, with IC50 values in the range of 
17–36 μM. NY2276 has an IC50 value of 17 μM in an in vitro assay; 
however, this compound has weak antagonistic effects on Myc-
induced oncogenic transformation in cell culture [21]. Recently, these 
researchers identified compound KJ-Pyr-9 in a Krőhnke pyridine 
library using a fluorescent polarization screen. KJ-Pyr-9 is not acutely 
toxic at concentrations as high as 10 mg/kg and penetrates the blood-
brain barrier. In addition, KJ-Pyr-9 occurs at higher concentrations 
in brain tissue than in the blood after 4 h. Furthermore, nude mice 
treated daily with 10 mg/kg KJ-Pyr-9 by i.p. injection for one month 
expressed MDA-MB-231 cells. Tumor volume in the KJ-Pyr-9-treated 
mice did not notably increase and body weights were unchanged [22].

Berg et al. utilized a fluorescent polarization assay to screen a library 
of 17,000 chemicals in order to discover a Myc inhibitor, Mycro 1, 
which disrupts the binding between Myc-Max and DNA with an 
IC50 value of 72 μM. Mycro 1 is selective for Myc-Max heterodimers 
over c-Jun–c-Fos heterodimers and inhibits proliferation of a diverse 
number of cell lines, including the breast cancer cell line MCF-7. In a 
recent progress report, Berg et al. reported the discovery of Mycro3, 
a pyrazolo[1,5-a]pyrimidine scaffold that inhibits both Myc-Max 
dimerization and DNA-binding with good selectivity [23].

Henriksson et al. identified Myc pathway response agents (MYRA), 
which are small molecules that inhibit Myc-induced cellular 
transformation[24]. Interestingly, MYRA-A and MYRA-B have 
different inhibitory effects on the DNA-binding activity of Myc-
Max. MYRA-A hampers the DNA binding of Myc-Max and Mnt-
Max heterodimers in a dose-dependent manner, but has no effect 
on DNA binding of the E-box-binding transcription factor, USF. In 
contrast, MYRA-B showed no effects at a concentration of 400 μM, 
as determined by EMSA. MYRA-A might conceivably discriminate 
the Myc protein from other E-box-binding proteins; however, 
MYRA-B potentially acts through effects on variant E-box promoters 
by interacting with other transcriptional factors that bind Myc, by 
interfering with adaptor proteins, or by an indirect mechanism [24].

Challenge

Our understanding of mechanisms involved in direct interruption 
of Myc-Max heterodimerization or Myc-Max/DNA complexation 
using small molecules has been advancing rapidly over the past 
several years. Several research groups have identified small molecules 
that have good inhibitory effects on the Myc-Max/DNA complex, 
in both in vitro and in vivo models. Experimental data suggest that 
small molecules have the potential to be advanced into therapeutic 
agents for customized cancer treatment. However, we still need to 
overcome significant barriers in order to obtain highly specific and 
active anticancer drugs. The development of small molecules using 
rational drug design, along with functionalization to interrupt the 
hot spot between Myc-Max and Myc-Max/DNA could result in the 
development of effective therapeutic drugs to treat cancers.
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