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Abstract

Human fetal development takes place in the sterile environment of the uterus. The development 
of the immune system starts as early as 8 weeks gestation. Directly after birth, in fact already during 
the birth process, the newborn baby comes into contact with bacteria from the environment, and the 
gastrointestinal tract becomes colonized with microbiota. This also marks the first contacts of the 
(mucosal) immune system with microbial antigens. The early exposure to a variety of microbial stimuli 
regulates the balanced development of the neonatal immune system. On the other hand, the activity 
of the immune stem also shapes the composition and functionality of the gut microbiota. The cellular 
and molecular mechanisms underlying these interactions will be discussed in this review, as well as 
the implications for maintenance of homeostasis and prevention of (immune mediated) diseases.
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This manuscript deals with the development of the intestinal 
microbiota in infancy. It includes the study of the effects of probiotics 
in early childhood on the composition and functionality of infant 
microbiota with a focus on the interaction between gut microbiota 
and development of the neonatal immune system. As search strategy 
of this review we searched Pubmed (https://www.ncbi.nlm.nih.gov/
pubmed/) and Web of Science (http://apps.webofknowledge.com) 
using the keywords microbiota in combination with development, 
infant, childhood, as well as immune system and immunity. No 
restriction on publication year was applied and for review articles the 
most recent ones were included.

Origin and Definitions
 

The potential association between the composition of human gut 
microbiota and the development of disease was proposed already by 
Metchnikoff in the early 20th century. He hypothesized that replacing 
or diminishing ‘putrefactive’ bacteria in the gut with lactic acid 
bacteria could normalize bowel health and prolong life [15,16]. Joshua 
Lederberg, a Nobel prize winning American molecular biologist, 
known for his work in microbial genetics, emphasized the importance 
of the intestinal bacterial population and introduced the overarching 
term ‘microbiome’, ‘to signify the ecological community of commensal, 
symbiotic, and pathogenic microorganisms that literally share our body 
space’[17]. Sometimes the term ‘microbiome’ is used interchangeably 
with the term ‘microbiota’ [18]. The microbiome is the collection 
of genomes of all microbes that live inside and on the human body 
(bacteria, but also bacteriophages, fungi, protozoa and viruses). The 
microbiota is the ecological community of commensal, symbiotic and 
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Introduction

The number of bacteria inhabiting the human body is estimated to be 
approximately ten times larger than the number of human body cells. 
It should be mentioned however that this estimate recently has been 
challenged [1]. The majority of these micro-organisms are found in the 
gastrointestinal tract, which comprises approximately 1014 bacteria 
[2-4]. This bacterial population is referred to as the gut microbiota 
and weighs more than 1.5 kg. Because the human host and the gut 
microbiota are totally dependent on each other, collectively they are 
termed a ‘super organism’ [5]. The gut microbiota can be considered 
an ‘acquired’ organ, because intestinal colonization starts immediately 
after birth and evolves as we grow. This process could be envisioned 
as the creation of the (microbial) world in the intestines (Figure 1). 
The microbiota constitutes an ecologically dynamic community with 
a number of essential functions for the human host. These include 
digestion of food components, providing nutrients and vitamins, 
regulation of intestinal development, maturation and regulation of 
the immune system, and more, all contributing to overall health [6,7]. 
In total, 2172 bacterial species have been identified in the human gut 
(Figure 2) [8], but one individual harbors around 160 different species 
[9]. Until the 1990s, knowledge of the gut microbiota was limited 
because conventional culture was the only technique to characterize 
its composition. However, it is estimated that at least 20 to 60% of 
the bacteria is uncultivable, resulting in an underestimation of gut 
microbiota diversity [10]. The introduction of culture-independent 
molecular and high-throughput approaches enabled phylogenetic 
investigations and quantification of the bacterial community, thereby 
refining the original perspective on composition and dynamic 
changes of the gut microbiota. These techniques moreover advanced 
our insights into the impact of host and environmental factors on 
bacterial community structure and dynamics [11].

One of the most exciting developments in recent years in the 
biomedical sciences has been the understanding that the intestinal 
microbiota strongly affects human physiology, by elucidating the 
mechanisms underlying the associations between gut microbiota, 
health and disease [12-14]. The increase in the number of publications 
on the human microbiota has been exponential in the last few years 
and continues to grow (Figure 3). The outburst of discoveries in the 
microbiome field in the course of the last five to six years has changed 
our perspective on human biology, both in terms of health and disease.

https://doi.org/10.15344/2456-8171/2017/122
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Figure 1: The Creation of the World painted by Jheronimus Bosch in 1514 on the reverse side of The Garden of Earthly 
Delights. Museo El Prado, Madrid, Spain. Source Wikimedia Commons.

Figure 2: Relative proportions of the major bacterial phyla in the human intestine.
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pathogenic microorganisms that resides in a previously established 
environment [12]. This microbial community was previously termed 
gut flora, a term which should be discouraged because it would 
suggest that bacteria belong to the plant kingdom. Description of the 
functionality of the gut microbiota can be done by investigating the 
collective assortment of metabolites present in a stool sample (the 
fecal metabolome), referred to as ‘metabolomics’; by studying the total 
transcribed RNA, referred to as ‘metatranscriptomics’, and by focusing 
on protein levels, called ‘metaproteomics’. ‘Metagenomics’ (also known 
as environmental genomics or community genomics) is the study 
of the metagenome, i.e. the collective community of genomes from 
a particular ecosystem (in this case, the gut). When only genes are 
assessed, a marker gene study is performed [4,19,20]. It is estimated 
that the human gut metagenome consists of 9,879,896 genes [21], a 
dazzling number when compared to the 18,877 human genes [22].

Classification and Composition of Gut Microbiota

All life on earth, from microbes to larger organisms, including 
man, has gone through a similar biochemical evolution. Back in 
1977, Carl Woese performed comparative studies of rRNA sequences 
and underpinned the basis for a universal phylogeny. He outlined 
a universal sequence-based tree of life, with three phylogenetic 
domains: Archaea, Bacteria and Eukarya [23]. Nowadays, this 
three-domain model is grounded by further information on gene 
sequence and on biochemical correlations [24]. Over the past 
decades, the rRNA gene sequences have been a major advancement 
for microbial identification. Most bacterial species isolated from the 
human gut (93.5%) are members of four bacterial phyla: Firmicutes, 
Proteobacteria, Actinobacteria, and Bacteroidetes (see also Figure 2) 
[8]. The Firmicutes are mainly represented by the genera Clostridium, 

Faecalibacterium, Blautia, Ruminococcus, and Lactobacillus, and 
the Bacteroidetes including Bacteroides and Prevotella [25,26]. 
Other phyla such as Proteobacteria (Gammaproteo bacteria with 
Enterobacteriaceae), Actinobacteria (Bifidobacterium), Fusobacteria 
and Verrucomicrobia (Akkermansia) are present in lower abundance 
but also have a significant influence on the total microbial 
configuration [8,27].

Development of the Intestinal Microbiota

From birth onwards, the infant intestine becomes increasingly 
colonized with a wide variety of microorganisms. This would imply, 
and that is the general consensus, that during the fetal period the 
intestine is sterile. Lately this view has been challenged and the concept 
of a fetal microbiome has been put forward. Is there something like 
a fetal microbiome, and if so, where does it come from? Sensitive 
molecular methods would point towards the existence of a placental 
microbiome, resembling the oral microbiome [28]. Also amniotic 
fluid and meconium have been shown to contain bacterial DNA 
[29,30]. Critics state that the placenta microbiome is indistinguishable 
from contamination during DNA isolation and this issue certainly is 
not resolved [31].

Whether or not the intestines are sterile at the moment of birth, 
the gastrointestinal tract will become exposed to bacteria from the 
environment already during the birth process or immediately after 
birth. The classical early colonizers of the infant gut are facultative 
anaerobes of the phylum Proteobacteria, such as Escherichia coli 
and other Enterobacteriaceae. These organisms pave the way for 
strictly anaerobic bacteria such as Bifidobacterium, Clostridium, 
and Bacteroides, and sometimes Ruminococcus, by depleting the 
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Figure 3: Increase in the number of scientific publications in PubMed using the search term “microbiota”.
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initially available oxygen in a matter of days. The rapid colonization 
by commensal bacteria has great impact for the development of the 
(mucosal) immune response of the infant. It leads to a balanced 
development of the various components of the mucosal immune system 
and induces tolerance to those bacteria. The infant gastrointestinal 
community is characterized by low stability, limited bacterial richness 

and great inter-individual variation [32,33]. During the period prior 
to weaning the microbiome can display large shifts in the abundances 
of bacterial taxa [34,35]. Subsequently, the intestinal microbiota of the 
infant slowly develops and matures. Weaning results in a shift towards 
the bacterial group’s characteristic of the adult microbiota [36]. The 
microbial community is thought to reach an adult-like composition 
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Figure 5: Interaction between gut microbiota and the mucosal immune system. Cellular processes depicted in the hatched 
circles 1, 2, and 3, are explained in the text. Cells of the mucosal immune system are indicated as follows: dendritic cell 
(DC), undifferentiated T helper lymphocyte (Th0), regulatory T helper lymphocyte (Treg), type 17 T helper lymphocytes 
(Th17), type 3 innate lymphoid cell (ILC3), and B lymphocyte (B cell).

Figure 4: Factors influencing gut microbiota development in early infancy and conception of possible programming mechanisms by 
the intestinal microbiota. NEC = necrotizing enterocolitis; IBD = inflammatory bowel disease. Based upon references [18,75].
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around three years of age [12,34]. Other literature however indicates 
that the evolvement into adult-like microbiota may continue beyond 
that age [37-39]. Which bacteria should be represented (quality as 
well as quantity) in a ‘healthy’ or ‘normal’ intestinal microbiota has 
not been clearly defined yet.

Recent literature suggests a broad core microbiota in adults with 
high variation in species, diversity and genetic functions between 
individuals, although the main microbial gene functions may be 
maintained in almost every individual [40-44].

Genetic and Environmental Factors Influencing 
Development of the Intestinal Microbiota

A wide range of factors, genetic and environmental, can influence 
the diversity and composition of the intestinal microbiota and its 
establishment (Figure 4). In the first few hours of life, the mother’s 
vaginal and fecal bacterial populations are usually the most important 
source of inoculum. Moreover, skin microbiota of parents and siblings, 
bacteria from breast milk, and bacteria from the environment are 
sources of strains colonizing the gut in early life [3,43,45]. Mode of 
delivery, gestational age and feeding mode especially affect the infant’s 
microbiota composition [46-49]. Besides, prescription of antibiotics 
in early life and supplementation with prebiotics or probiotics can 
have a direct and major effect on the development of the intestinal 
microbiota [47,50,51].

Generally, the mode of delivery is the most influencing factor 
for microbiota development. Bifidobacterium species, known 
as beneficial species for the host, dominate the relatively simply 
composited microbiota of full-term vaginally-delivered infants within 
the first two weeks of life. Prominent genera are also Lactobacillus, 
Prevotella, Escherichia and Bacteroides, including a bacterial 
community that represents the mother’s vaginal and intestinal 
microbiota [52,53]. Caesarean-delivered infants have a reduced 
number of Bifidobacterium; Staphylococcus, Corynebacterium, and 
Propionibacterium are dominating bacterial species in their microbiota 
which shows less resemblance to their mother’s, as compared to 
vaginally delivered infants [52,54,55].Another significant factor which 
influences microbiota composition is feeding type. The microbiota 
of breast-fed neonates is dominated by the genera Bifidobacterium 
and Ruminococcus. Formula-fed neonates have a more complex 
composition compared with breast-fed neonates and harbor a 
diverse microbiota including Enterobacteriaceae, Enterococcus and 
Bacteroides, as well as Bifidobacterium and Atopobium [46,56,57].

There is an overwhelming amount of evidence that exposure 
to antibiotics in early life, which has become common in modern 
obstetric and neonatal practice, is associated with profound effects 
on the neonatal gut microbiota composition. In general, antibiotic 
treatment leads to a decrease in the microbial diversity [58]. 
Overgrowth of Enterococci and arrested growth of Bifidobacterium 
in term infants exposed to antibiotics in the first week of life have 
been described [50,60-62]. Antibiotic exposure at the beginning of 
life can modify the course of bacterial infections and is associated 
with development of atopic disease [63-66] and with other immune 
mediated diseases [67,68] as well as obesity [69].

Information on the role of genetic factors which affect the 
composition of the intestinal microbiome comes from studies of

monozygotic and dizygotic twins and studies in humans where 
specific microbiota profiles are associated with subjects that have 
mutations at specific genetic loci. The data show that the microbiome 
is shared among family members, because individuals from the same 
family (twin pairs, or twins and their mother) have a more similar 
microbiota than unrelated individuals [70-72]. Despite the wide 
variation of shared microbial genes among individuals, an extensive, 
identifiable human 'core microbiome' at the gene level could be 
identified and deviations from this core were associated with different 
physiological states [42]. An increasing number of genes/molecules 
(such as the genes of the class 2 major histocompatibility complex 
(MHC)) is found to be associated with specific microbial compositions 
and detection and monitoring of the intestinal lumen by the mucosal 
immune system of the gut [73].

Microbial colonization of the intestine plays an important role in 
the postnatal development of the gastrointestinal system [74], thereby 
influencing host metabolism and disease development [18,20,75-77]. 
Bacteria form a complex ecological community that can modulate the 
expression of genes involved in several important intestinal functions. 
The community influences normal physiology and susceptibility 
to disease through collective metabolic activities and interactions, 
including nutrient absorption, mucosal barrier strengthening, 
xenobiotic metabolism, angiogenesis and postnatal intestinal 
development. Other functions of gut bacteria are the involvement 
in the metabolism of otherwise indigestible carbohydrates and the 
production of essential metabolites such as vitamin K [78-82].

Impact of Gut Microbiota on Development of the Immune 
System

The development of the immune system starts already during 
the fetal period. After 8 weeks of gestation the first B lymphocytes 
can be detected in the fetal liver. Progenitors of T lymphocytes start 
migrating to the thymus anlage by weeks 8 to 9. B lymphocytes are 
detectable in fetal blood circulation by 12 weeks of gestation, T 
lymphocytes 3-4 weeks later [83]. The functional immune repertoire 
further develops during fetal life, but is not challenged because of the 
sterile environment [84-87].

The function of the mucosal immune system is to prevent 
pathogenic micro-organisms from the environment (in the context of 
the present discussion: from the gut) to invade the body. As outlined 
above, immediately after birth the gastrointestinal tract becomes 
colonized with bacteria and other micro-organisms. 

The microbiota that colonizes the neonatal gastrointestinal tract 
is of utmost importance for growth and maturation of the various 
cellular components of the intestines itself, but certainly also for the 
regulated development of both the mucosal immune system of the 
gut as well as the systemic immune system [88]. This is demonstrated 
by (severe) deficiency of various types of immune cell types and 
organized lymphoid tissue in germ-free animals: secondary lymphoid 
organs such as mesenteric lymph nodes and Peyer’s patches are smaller 
and fewer in number and have a poorly organized structure. T and 
Blymphocytes are reduced in numbers [88]. The gut microbiota also 
modulates the development and functionality of the innate immune 
system lining the gastrointestinal tract [89-91].

It would be an immense, if not impossible task, for the immune 
system to eliminate all micro-organisms from the gut. The
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immune system therefore is programmed and matures in such a 
way that resident, non-pathogenic micro-organisms are tolerated 
and compartmentalized [92]. Induction of tolerance to resident 
microbiota is induced immediately after birth and involves Toll-like 
receptor (TLR) signaling via secretory leukocyte protease inhibitor 
proteins [93,94].

A prominent deficiency of germ-free mice is the lack of expansion 
of CD4+ regulatory T lymphocytes (Tregs) [95]. This deficiency can 
be completely restored by the treatment of germ-free mice with 
polysaccharide A from the capsule of Bacteroides fragilis (see also 
Figure 5, panel 1) [96-98]. This process is mainly mediated by the 
pattern recognition receptors (PRRs) of epithelial cells, such as TLRs 
or Nod-like receptors, receptors which are able to recognize molecules 
(such as polysaccharide A) produced by intestinal microbes. These 
mechanisms allow discriminating between beneficial and pathogenic 
bacteria and increasing the number of immune cells or PRRs [99-101].

B. fragilis is not the only bacterial species that can induce mucosal 
Tregs; also Roseburia and various Clostridia species as well as others 
have this capacity [102,103].

In this case the mechanism is totally different. Human colonic 
bacteria can ferment resistant starch and non-starch polysaccharides 
(which are major components of dietary fiber) to short-chain fatty 
acids (SCFAs). Among the SCFAs, butyrate, that has multiple 
functions including anti-inflammatory properties, is important for 
a healthy gut physiology [81,82]. The SCFAs, in particular butyrate 
and acetate, can directly promote Treg differentiation in the colon 
of mice (see also Figure 5, panel 3) [104-106]. The butyrate acts as a 
transcription factor via histone deacetylase inhibition and also via a G 
protein-coupled receptor signaling mechanisms [106].

Another example of a commensal bacterium with a direct 
immunoregulatory function is the segmented filamentous bacterium 
SFB (see Figure5, panel 2). SFB belongs to a class of anaerobic and 
clostridia related spore-forming bacteria of the gastrointestinal 
tract [107]. SFB is closely associated with gut epithelial cells and 
stimulates these cells to release serum amyloid A1. Colonization of 
germ-free animals with SFB stimulates maturation of the gut mucosal 
lymphoid tissue, promotes mucosal IgA production, and stimulates 
the differentiation of T-helper 17 cells [108].

Akkermansia muciniphila (the single representative of the phylum 
Verrucomicrobia in the human gut; see Figure 2) is associated with 
protection against several inflammatory diseases [109,110]. Both 
the expression of type IV pilias well as production of SCFAs have 
been proposed as mechanisms of action [111,112]. In patients with 
Crohn’s disease a lower abundance of Faecalibacterium prausnitzii is 
found [113]. An anti-inflammatory protein from F. prausnitzii has 
been shown to inhibit NF-κB in intestinal epithelial cells and (thus) 
prevents colitis in an animal model [114,115].

All these examples underscore the importance of gut microbiota 
on development and function of the (mucosal) immune system. The 
most compelling evidence for modulation of the immune system by 
gut microbiota comes from the response to checkpoint inhibition 
therapy and adoptive cell therapy for cancer [116-122]. Elucidation 
of the underlying mechanisms and identification of the key microbial 
species will be the next steps.

Modulation of Intestinal Microbiota by Probiotics and 
Prebiotics

The gut microbiota plays a crucial role in the physiological 
development of both the intestinal as well as the immune system, 
and therefore disturbances in gut microbiota can be causally 
related to inflammatory and immune mediated diseases. Indeed, 
the development of allergic diseases has been linked to an altered 
gut microbiota composition, reduced microbial exposure and 
reduced bacterial diversity in childhood [123-125]. This hypothesis 
has been modified into the ‘gut microbial deprivation hypothesis’, 
with its emphasis on alterations of original gut microbiota during 
infancy [126-130]. Whatever the cause, an aberrant microbial 
colonization pattern or a distortion of the microbial ecology early 
in life might predispose the infant to immune mediated diseases 
such as T-helper 2 (Th2)diseases like allergy, wheezing and asthma, 
or auto-inflammatory T-helper 1 (Th1) diseases, like inflammatory 
bowel disease, diabetes and obesity [75,125,131-135]. In this context, 
the window of opportunity for influencing the composition of the 
intestinal microbiota and possibly modulation ofthe development of 
(later) allergic or autoimmune diseases, would be the neonatal period.

There is increasing evidence that modulation of the infant 
microbiota can restore the ecological balance [137-139]. This 
modulation is mainly done by supplementation of pre- and probiotics. 
A prebiotic is defined as ‘a selectively fermented ingredient that 
results in specific changes, in the composition and/or activity of the 
gastrointestinal microbiota, thus conferring benefit(s) upon host 
health’ [140].The term ‘probiotic’ is used for microorganisms with a 
health benefit beyond basic nutrition. Probiotics are defined as live 
microorganisms that, when administered in adequate amounts, confer 
a health benefit on the host [141]. The most widely used probiotic 
bacteria belong to either the Lactobacillus or the Bifidobacterium 
genera. Many studies have investigated the potential of probiotics, 
both for primary prevention as well as treatment for infectious and/
or immune-mediated diseases. The Cochrane database of systematic 
reviews list a number of infectious and immune-mediated diseases for 
which probiotics have shown to have a beneficial effect. These include 
prevention of Clostridium difficile-associated diarrhea, both in adults 
as well as in children [142], pediatric antibiotic-associated diarrhea 
[143], the prevention of acute upper respiratory tract infections 
[144] and of ventilator associated pneumonia [145], the severity 
of hepatic encephalopathy [146], the treatment and prevention of 
pouchitis after ileal pouch-anal anastomosis for chronic ulcerative 
colitis [147], and prevention of necrotizing enterocolitisin preterm 
infants [148]. Results obtained with probiotics for primary prevention 
or treatment of allergic diseases are variable [148-154], which may 
be related to the strain-specific effects of probiotic bacteria and/
or considerable variations in study design, doses administered and 
duration of the intervention. In a recent systematic review of diet 
during pregnancy and infancy and the risk of allergic or autoimmune 
disease development, a relationship was found between maternal diet 
during pregnancy and lactation, and eczema or allergic sensitization 
to food during childhood. A positive health effect was also found for 
probiotics and supplements of fish oil [155].

Modulation of the (composition and functionality) infant gut 
microbiota can also be executed by prebiotics. This topic has recently 
been dealt with in a series of excellent reviews [156-158]. Prebiotics, 
either alone or in combination with probiotics (the combination 
of the two is called synbiotics) thus help to develop a healthy gut 
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microbiome. Breast milk, containing human milk oligosaccharides, 
is a natural source of prebiotics and provides the baby with optimal 
active ingredients for outgrowth of especially bifidobacteria [159].

One of the potential mechanisms by which probiotic bacteria 
regulate the development of the mucosal immune system is by 
stimulation of the differentiation of naive T cells towards Th1 or Treg 
cells, thereby shifting the balance between Th1 and Th2 cells. There 
are indications that probiotic intervention, via induction of butyrate 
production, actually could work this way [160]. Future studies should 
address host and microbiota interactions and identify optimal timing 
and duration of pre- and/or probiotic supplementation as strategy for 
prevention of immune-mediated diseases.

Summary and Conclusion

To summarize: the human infant develops an initial microbiota as 
it becomes colonized with a wide variety of microorganisms during or 
directly after birth. The neonatal period comprises a critical period for 
its development, when early programming occurs and the immune 
system matures. The long-term composition and functionality of 
the newborn’s gut microbiome is programmed during this period, 
thereby laying the foundation for future health and influencing the 
risk of developing disease later in life [161,162]. The development 
of the gut microbiota continues during the first years of life and its 
composition is considered to resemble the adult gastrointestinal tract 
when the child is at the age of 3 years [38,163]. Modulation of the 
infant microbiota can restore the ecological balance of the microbiota 
and thus contribute to an optimal development of the immune system, 
enabling adequate defense against infectious diseases, while avoiding 
allergic and autoimmune diseases.
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