
Abstract

Introduction: Pyogenic liver abscess is usually caused by multiple bacterial infections. This disease can 
be caused by single microorganism, Klebsiella pneumoniae that has been reported in Asia, North America 
and Europe. Many virulence factors of K. pneumoniae have identified including capsular polysaccharide, 
lipopolysaccharide, serum resistance, adhesins and siderophores. Previously, we demonstrated the 
virulent effect of outer membrane porin (OMP) K 36 by a lethality study. However, the role of OmpK36 
in liver abscess pathogenesis is still unclear.
Objective: In this study, a virulent K. pneumoniae strain NVT-1002 and OmpK36 deficient mutant 
(ΔOMPK) were used to examine the contribution of OmpK36 to liver abscess. Liver injuries and 
inflammatory cytokines expression were detected by tissue section and enzyme linked-immunosorbent 
assay respectively. The toxic effect of OmpK36 to human hepatoma cell (HepG2) was tested by bacterial 
infections and the treatment with OmpK36 recombinant protein.
Results: The Results demonstrated that the NVT-1002 induced sever liver injuries while little or no 
damage was found in mice injected with OmpK36. Expression of serum and liver cytokines including 
TNF-α, IL-1β, IL-6 and IL-10 were elevated after injection of NVT-1002, meanwhile, only IL-1β was 
transiently elevated in OmpK36 group. Interestingly, OmpK36 recombinant protein showed no toxic 
effect to HepG2 cells, and the virulence of OmpK36 mutant to HepG2 was not altered compared to 
NVT-1002 group. 
Conclusion: In conclusion, OmpK36 contributes to the K. pneumoniae induced liver abscess and 
inflammatory responses. The virulent effect of OmpK36 is not mediated by the protein itself, but other 
uncertain mechanisms. OmpK36 may be a therapeutic target in K. pneumoniae infection.

Contribution of Outer Membrane Porin (Omp) K36 to Klebsiella 
pneumoniae induced Liver Abscess

Publication History:

Received: August 26, 2016
Accepted: September 29, 2016
Published: October 01, 2016

Keywords:

OmpK36, Virulence, Liver abscess, 
Inflammatory

Original Article Open Access

Introduction

Klebsiella pneumoniae have been documented as the common 
factor for cryptogenic liver abscess in Asia Pacific [1,2]. Similar 
findings in North America and Europe have also been reported [3-
5]. Several virulent factors of K. pneumoniae were discovered and 
these factors are almost related to specific capsular polysaccharides 
(CPS) [2,6-8]. Accumulating reports have indicated that the capsule 
is essential to the virulence of Klebsiella species [9-11]. Up to now, the 
capsular antigen have been classified into 77 serotypes , and serotype 
K1 and K2 capsular antigen were found to comprise virulence in 
mouse peritonitis model, whereas isolates of serotypes other than K1 
or K2 were with little or no virulence [5,12]. 

Outer membrane porins (OMP) are proteins that cross a cellular 
membrane and contribute to the diffusion of molecules. Many studies 
have showed OMPs play important roles in antimicrobial resistance 
[13, 14]. Previously, we have demonstrated the virulent effects 
of OMPK 36 by an animal study [15]. In this report, the results of 
animal lethality study showed that the virulence of OmpK36 mutant 
was reduced about 100 fold compared to the wild-type strain NVT-
1002, which was isolated from a patient with liver abscess. However, 
the participation of OmpK36 in K. pneumoniae induced liver abscess 
formation and the toxicity to cells are still unclear. In this study, we 
examined the role of OmpK36 in K. pneumoniae induced pathogenesis 
by animal model and the inflammatory cytokines were also detected. 
In addition, the direct toxic effects of OmpK36 and whole bacteria 
were detected by the cell model.
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Materials and Methods

Mice liver abscess study

Klebsiella pneumoniae isolates NVT-1002 and ΔOmpK36 were 
obtained as previously [15]. The adult BALB/c mice were injected 
intraperitoneally with 103 cfu of K. pneumoniae NVT-1002 or 
ΔOmpK36-NVT-1002 in 0.1 mL phosphate buffered saline. Mice 
were sacrificed with CO2 after 1-3 days bacterial injections, the 
livers were removed, fixed with paraformaldehyde and embedded in 
paraffin. Histological sections were observed after hematoxylin–eosin 
(H&E) staining. 

Kinetic of inflammatory cytokines production in liver and serum

Liver was removed for tissue section and supernatant of each sample 
was collected for cytokines production. Cardiac blood samples were 
collected under aseptic conditions. Blood samples were allowed to colt 
at 40°C and then centrifuged at 15000 rpm for 3 min. Serum samples
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were preserved at -80°C until measurement of the cytokine. Cytokine 
concentrations in liver and serum were measured with a mice 
cytokine 10-plex antibody bead kit (R&D systems, Minneapolis, MN) 
according to the manufacturer's instructions. Tumor necrosis factor 
(TNF)-α, interleukin (IL)-1β, IL-6 and IL-10 levels were determined. 
The supernatants from homogenized liver were then withdrawn at 
the indicated times, and dilutions were assayed in triplicate for each 
independent experiment. All samples were tested in triplicate. The 
minimal detectable protein concentration was 10 pg/ml.

Construction of pET30a-OmpK36

The DNA fragment of OmpK36 was amplified by primer pairs 
OmpK36F (5’-GGGAATTCCATATGCACCATCATCATCATCATA
TGAAAGTTAAAGTACTG-3’) and OmpK36R (5’-CCGCTCGAG
GAACTGGTAAACCAGGCC-3’) from a clinical isolate NVT-1002. 
The amplified fragments were digested with restriction enzymes and 
cloned into the expression region of plasmid pET30a (Novagen). The 
pET30a-OmpK36 was used to express a 6His-OmpK36 protein as 
described below. 

Recombinant OmpK36 protein expression, purification and 
detoxification

The pET30a-OmpK36 was transformed into BL-21 (DE3) 
competent cells. An overnight cell culture (3 mL) was grown at 37°C 
in the presence of 50 mg/L kanamycin. After transfer of the cell culture 
to 300 ml of Luria-Bertani medium, the cell suspension was allowed 
to reach an OD600 of 0.7–0.9 before addition of IPTG (1 mM). Cells 
were grown for 4 h at 37°C and then centrifuged at 9000g for 30 min. 
Whole-cell lysates were prepared by sonication (Sonics Vibracell 
sonicator, 25% amplitude, pulsed 1 sec “on” and 2 sec “off ” for a total 
of 5 min of “on” time, at 4 sec) in phosphate buffered saline with 6 M 
urea. The soluble protein fraction was then mixed with 8 mL of Ni2+ 

resins (Amersham) to capture the His-OmpK36 recombinant protein. 
The Ni2+ resins was then washed with 40 mL of wash buffer (10 mM 
imidazole, 6 M urea, 10% glycerol in phosphate buffered saline (PBS)) 
and eluted by wash buffer with 40 mM imidazole. The flowthrough 
was collected and dialyzed by PBS with 3M urea and 10% glycerol 
for 4 hr and then by PBS with 10% glycerol overnight. The endotoxin 
was removed by Pierce Detoxi-Gel endotoxin removal gel (Thermo 
Scientific, Rockford, IL) as described in user’s manual. Expression of 
the His-OmpK36 protein was determined Western blot and the final 
protein concentration was measured by Bradford assay (Bio-Rad). 

Culture of hepatoma HepG2 cells

HepG2 cells was cultured in Eagle's Minimum Essential Medium 
supplemented with 10% fetal bovine serum (FBS), incubated at 
37°C, 5% CO2 in a humidified incubator. The culture medium will 
be changed every day. Cells were grown to confluence in 25 cm2 
tissue flasks. Subsequently, the cells was trypsinized with trypsin/
EDTA solution in phosphate-buffered saline (PBS), centrifuged and 
resuspended in fresh media. Before the experiment, cells were seeded 
onto the variant tissue culture dishes overnight. 

Cell viability assay

Cell viability was detected by MTS assay, Cell titer 96®AQueus 
(Promega). In brief, 2×104 cells were seeded on to 48 well plates in 
200 µl serum free media per well and incubated for 24 hrs. After 
variant treatments included of a multiplicity of infection (MOI) of 60

whole bacterial infection or OmpK36 recombinant protein, cells were 
washed with PBS 3 times, 20 µl MTS reagents were added to each well 
in the final volume of 100 µl and placed in incubator for 2 hours. The 
optical density was measured at 490 nm using a plate reader.

Statistical analysis

Student’s t test was used for statistical analysis. Data represented as 
means ± standard deviations. P values of less than 0.05 was considered 
statistically significant.

Results

Contribution of OmpK36 the K. pneumoniae induced liver abscess

Histological sections showed that remarkable injuries in liver were 
seen after 24 hours of injection with wild type K. pneumoniae (NVT-
1002). More severe injuries were found at day 2 and day 3 (Figure 1). 
In the meanwhile, the injuries were almost abolished in mice injected 
with OmpK36-KO. This is suggested that OmpK36 plays an important 
role in K. pneumoniae induced liver abscess (Figure 1).

Rols of OmpK36 in Klebsiella pneumoniae induced cytokines 
expression, included of TNF-α, IL-1β, IL-6 and IL-10

Pro- and anti-inflammatory cytokines secretion in response to 
bacterial infection included IL-1β, IL-6, IL-10 and TNF-α were 
detected by ELISA. The wild-type K. pneumoniae NVT-1002 elicited 
the secretions of all the cytokines both in plasma (Figure 2) and liver 
(Figure 3). It is notable that most of the elevated cytokines have the 
peaks at day 2. In contrast, the OmpK36 KO mutant only transiently 
enhanced IL-1βexpressions and the other cytokines were almost 
undetectable both in liver and serum.

Direct cytotoxic effects of OmpK36 recombinant protein and whole 
bacterial infection to HepG2 hepatoma cells
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Figure 1: Contribution of OmpK36 to the pathogenesis of liver abscess. 
The wild-type NVT-1002 can induce the tissue damage in liver 
significantly and with a time dependent manner. The phenomena was 
almost abolished in OmpK36 deficient mutant (Magnification, ×100).
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Figure 2: Role of OmpK36 in serum cytokines TNF-α, IL-1β, IL-6 and IL-10 secretion. The wild-type NVT-1002 can elevate the serum cytokines 
significantly including TNF-α, IL-1β, IL-6 and IL-10, while the ΔOmpK36 can only enhance IL-1βexpression. The value was mean ± standard error 
of mean (SEM) at 3, 24, 48 and 72 hours of reaction, n=5.

Figure 3. Role of OmpK36 in hepatic cytokines TNF-α, IL-1β, IL-6 and IL-10 secretion. The wild-type NVT-1002 can elevate the hepatic cytokines 
significantly including TNF-α, IL-1β, IL-6 and IL-10, while the ΔOmpK36 can only enhance IL-1βexpression. The value was mean ± standard error 
of mean (SEM) at 3, 24, 48 and 72 hours of reaction, n=5.
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HepG2 hepatoma cells were incubated with various concentrations 
of OmpK36recombinant protein for 24 hours or infected with whole 
bacteria with a MOI of 60 for 2-6 hours. The viability of HepG2 
cells were then detected by MTS. Results showed that no significant 
difference was detected in the toxicity to HepG2 cells (Figure 4a). 
Similar results were found in the toxicity of whole bacterial infection, 
the cell viability was not altered in the ∆OmpK36 group compared to 
the NVT-1002 group (Figure 4b).

Discussion

Liver abscesses caused by K. pneumoniae were first reported in 
Taiwan [1,16]. The extra-hepatic complications spread by blood 
stream such as endophthalmitis, fasciitis and meningitis have been 
reported [1,17-19]. The syndrome was subsequently reported in 
Asia and America [20, 21]. To date, the syndrome is emerging world 
wildly [22]. Several virulent factors of K. pneumoniae were described, 
including lipopolysaccharide, capsular polysaccharide, siderophore, 
resistance to phagocytosis and serum killing [23]. K. pneumoniae 
strains expressing capsular type K1 or K2 antigen are especially 
virulent. [7,24]. Previously, we first demonstrated that OmpK36 is a 
virulent factor of K. pneumoniae. However, the involvement of this 
porin in K. penumoniae induced liver abscess progression is still 
unclear. The wild-type NVT-1002 used in this study is a serotype K1 
clinical isolate which was isolated from patient with liver abscess. 
Injection with NVT-1002 intraperitoneally can induce severe hepatic 
injuries in experimental mice (Figure 1). On the contrary, the injuries 
were almost abolished in OmpK36 KO mutant group (Figure 1). 
Although this model cannot simulate the disease completely, it is still 
suggested that OmpK36 plays an important role in the pathogenesis 
of K. pneumoniae induced liver abscess.

Endogenous TNF-αis associated with severity of hemorrhagic 
and thrombotic lesions in organs, especially in the liver and kidney 
[25, 26]. IL-6 and IL-10 have the potential to inhibit TNF-α and 
IL-β expression from macrophage and peripheral monocytes [27, 
28]. IL-6 also has the anti-inflammatory potential by activation 
of transcription-3 protein in hepatocytes [27]. The balance of the 
inflammatory and anti-inflammatory cytokines may determine 
the tissue damage and mortality [29]. A previous report has been 

demonstrated that high IL-10 / TNF-α ratio is associated with the 
mortality [30]. In this study, the serum TNF-α, IL-6 and IL-10 were 
elevated and have the peaks at day 2 after injection of wild type NVT-
1002 (Figure 2). Similar results were found in hepatic IL-6 and IL-
10 (Fig. 3). At the time point, sever injuries were observed in tissue 
sections (Figure 1). It is possible that the expressions of cytokines 
are associated with the pathogenesis of liver abscess. In the OmpK36 
deficient group, both serum and hepatic IL-1βwere elevated, the other  
 

cytokines were almost undetectable (Figure 2 and Figure 3). This 
is evident that OmpK36 participate in the K. pneumoniae induced 
immune responses. However, the detail cellular and molecular 
mechanisms need further studies.

To identify the toxic effect of OmpK36, the in vitro cell model 
was used in this study. The HepG2 cells were treated with various 
concentrations of OmpK36 and the cell viability was detected by MTS 
method. Unexpectedly, the viability of HepG2 cells was not affected by 
recombinant OmpK36 protein (Figure 4a). Results of whole bacterial 
toxicity to HepG2 also showed that there is no significant difference 
was observed (Figure 4b). This is suggested that OmpK36 has no direct 
toxic effect to HepG2 cells. Previous study has been demonstrated that 
OmpK36 contributes to the resistance to phagocytosis, serum killing 
and the bacterial clearance in hepatocytes [15]. OmpK36 might 
prolong the duration of bacterial burden subsequently enlarge the 
injuries in organs such as liver and kidney.

The OmpK36 KO mutant used in this study should be with intact 
lipopolysaccharide and capsule. At least, the process of knock out 
is not affecting any target genes about LPS or capsule. Since the 
toxic effect is not from OmpK36 itself, another putative mechanism 
is that the expression of OmpK36 may influence the structure of 
other virulent factors such as LPS and capsule [31-33], the surface 
inflammatory inducer(s). However, the detail molecular mechanisms 
need more evidences.

In brief, OmpK36 contributes to the virulence of K. pneumoniae. 
The protein participates in the pathogenesis of K. pneumoniae induced 
liver abscess. The toxic effect of OmpK36 is mediated by enhancing 
other virulent factors possibly. The molecular mechanism(s) need 
further studies.
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Figure 4. Direct cytotoxicity effect of OmpK36 and whole bacteria (NVT-1002 andΔOmpK36) in hepatoma cells HepG2. HepG2 cells were treated with 
(a) variant concentrations of recombinant OmpK36 for 24 hours and (b) bacteria NVT-1002 orΔOmpK36. Viability was detected by MTS method. There 
was no significant difference in cell viability. The value was mean ± standard error of mean (SEM), n=5.
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