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Epigenetic regulation of transcription is one of the mechanisms 
of gene regulation in eukaryotes. Methylation of histones on 
lysine residues is one such epigenetic mechanism. The hallmark 
of proteins possessing lysine methyltransferase activity is the 
evolutionary conserved catalytic SET domain [1]. The SET domain 
methyltransferases can be divided into six main families in mammals: 
SETD1A, SETD1B and four MLLs (Mixed Lineage Leukemia 
families, also known as KMT2), including MLL1, MLL2, MLL3 and 
MLL4. Members of the MLL family work by forming multi-subunit 
complexes composed of unique sets of proteins [2-8]. The common 
components of MLL complex are RbBP5, Ash2L and WDR5. Those 
proteins are stably associated with the MLLs and facilitate enzyme-
substrate interaction. Especially WDR5 interacts with MLL-C 
terminal region and helps stabilize other core components [9-11].

 
MLLs, containing a conserved SET domain, have histone H3 on 

lysine 4 (H3K4) methyltransferase function and regulate specific 
gene expression through it [2,9,12-14]. For instance, MLLs target 
SET domain methyltransferase activity to the Hox gene promoters 
[14]. In the case of Hox13, MLLs play critical roles in estrogen-
mediated regulation as a methyltransferase [15]. Also, MLL1 fusion 
proteins activate the HoxA9 gene expression which causes aggressive 
leukemia. Specific recruitment of MLL1 requires multiple interactions 
which is a precondition for the stable recruitment of MLL1 fusion 
proteins to HoxA9 in leukemogenesis [16]. Furthermore, each 
member of the MLL family regulates gene expression in various ways. 
When NF-κB pathway is activated by tumor necrosis factor (TNF-α) 
and lipopolysaccharide, MLL1 is translocated onto the promoters of 
NF-κB target genes in a p65-dependent manner [17]. On the other 
hand, H3K4 trimethylation by MLL3 is critical for the activation of 
bile acid transporter genes through Farnesoid X receptor (FXR) and 
Glucocorticoid receptor (GR) signaling in hepatoma cells [18].

The function of MLLs as co-activators for nuclear receptor-
mediated activationhas also been proposed by several groups [19-
22]. Most recently, we found that MLL1 is critically involved in the 
transcriptional regulation of endogenous estrogen receptor(ER)
α target genes, (e.g. TFF1 and GREB1) in MCF-7 cells [23]. MLL1 
has a high occupancy at estrogen response element3 (ERE3) of the 
TFF1 gene after estradiol (E2) treatment. After MLL1 is recruited 
at the enhancer region (ERE3), it makes H3K4 mono-methylation, 
facilitating the recruitment of histone acetyltransferase (e.g. 
TIP60) which plays a critical role for the TFF1 gene transcription. 
Interestingly, the depletion of brahma-related gene 1 (BRG1) which 
is a key component of SWI/SNF (SWItch/Sucrose Non-Fermentable) 
chromatin remodeling complex eliminates E2-enhanced MLL1 
occupancy, indicating that BRG1 is required for the hormonal 
enhancement of the MLL1 occupancy. Thus, it appears that MLL1 acts 
as a co-activator in ERα-mediated gene expression.

Interestingly, our research indicated that the enhancer region of 
TFF1 gene is already occupied with MLL1 even before ERα binding. 
In this case, depletion of BRG1 does not affect the pre-hormonal 
occupancy level of MLL1(24). Thus, we conducted another research 
to investigate the potential role of MLL1 in maintaining the local
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chromatin structure in the enhancer region. Further intensive study 
revealed that MLL1 binds to the unmethylated CpG-rich enhancer 
region of target genes through the interaction with the CXXC motif. 
Importantly, MLL1 is required for the binding of Forkhead box 
protein A1 (FOXA1) and ERα to ERα target genes. FOXA1, a pioneer 
factor which is a transcription factor binding with chromosome 
and initiating the relaxation of chromatin (25-27), is known to bind 
with the genomic region that has high level of H3K4me1/2(28,29), 
and ERα binding [30]. When FOXA1 is recruited, FOXA1 aids 
chromosome binding of ERα, thus the depletion of FOXA1 almost 
eliminate ERα binding at EREs while it did not affect at MLL1 
occupancy. However, depletion of MLL1 results in not only a decrease 
of the pre-existing FOXA1 occupancy but also a dramatic inhibition 
of E2-induced ERα recruitment, confirming the absolute requirement 
of MLL1 for the estrogen-mediated transcription process. Under the 
absence of E2 stimulation, estrogen binding sites are partially opened. 
However, when MLL1 is depleted, chromatin accessibility to EREs is 
dramatically reduced. Also, enhancer region of ERα-target genes in 
MLL1-depleted cell shows remarkably reduced chromatin accessibility 
regardless being under E2 stimulation and not [23]. Thus, it appears 
that MLL1 maintains an active chromatin state by nucleosome 
positioning. CXXC motif of MLL1 binds to the unmethylated CpG 
region and facilitates the binding of FOXA1, and eventually ERα. 
Together, these results indicate that MLL1 plays a critical role in 
maintaining nucleosome positioning and chromatin configurations, 
which allows for establishment of active chromatin states required for 
gene activation (Figure 1).

Histone H3K4 specific methyltransferases (HMTs) play a 
critical role in maintaining nucleosome positioning as well as 
chromatin configurations by H3K4 methylation, thus facilitating the 
establishment of active chromatin states of ERα target genes.

MLL family proteins are also involved in aryl hydrocarbon 
receptor (AHR)-mediated transcription. AHR is a ligand dependent 
transcription factor and a member of bHLH (basic helix-loop-helix)-

International Journal of
Cancer Immunology & Immunotherapy

Nahyun Jung, Hong Lan Jin, Jaewook Yoo and Kwang Won Jeong*

Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea

Int J Cancer Immunol Immun                                                                                                                                                                               IJCII, an open access journal                                    
                                                                                                                                                                                                                                    Volume 1. 2015. 105                        

                         Jung et al., Int J Cancer Immunol Immun 2015, 1: 105
                         http://dx.doi.org/10.15344/ijcii/2015/105

http://dx.doi.org/10.15344/ijcii/2015/105%0D
http://dx.doi.org/10.15344/ijcii/2015/105


Int J Cancer Immunol Immun                                                                                                                                                                               IJCII, an open access journal                                    
                                                                                                                                                                                                                                    Volume 1. 2015. 105                         

PAS (Per-ARNT-Sim) family [31]. In the absence of the ligand, it resides 
in the cytosol associated with heat-shock protein 90 and hepatitis B 
virus X-associated protein (XAP2) as an inactive protein complex 
[32]. Upon ligand binding (e.g. TCDD) to AHR, it is dimerized with 
the AHR nuclear translocator (ARNT). The AHR/ARNT heterodimer 
interacts with xenobiotic responsive element (XRE) and facilitates the 
expression of multiple target genes, mostly encoding drug metabolism 
enzymes (e.g. cytochrome P450(CYP)1A1, B1) [33]. Binding of 
AhR/ARNT heterodimer to XREs in the promoter regions induces 
the recruitment of various coregulators of transcription(34). In our 
recent study, depletion of MLLs in hepatocytes caused the change 
of transcription of AHR target genes, suggesting that MLLmight be 
a key regulator of aryl hydrocarbon receptor target gene expression 
(unpublished data).

Similarly, MLL2 (also known as KMT2D or ALR) plays a critical 
role in the expression of GR target genes. Upon dexamethasone 
stimulation, GR induces the gene expression in such a manner as to 
recruit co-activators after binding to the GR-target genes. We found 
that the expression of GR-target genes increase after dexamethasone 
treatment in cell-type specific manner at the transcription level. 
However, the expression of those genes is significantly decreased by 
depletion of MLL2 (unpublished data). Further research must be 
conducted to determine how MLL family proteins are involved in cell-
type specific or pathway specific transcription of target gene.
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Figure 1. Chromatin accessibility to the enhancer is regulated by histone 
methyltransferases. Histone H3K4 specific methyltransferases (HMTs) play 
a critical role in maintaining nucleosome positioning as well as chromatin 
configurations by H3K4 methylation, thus facilitating the establishment of 
active chromatin states of ERα target genes.
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