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Introduction

In a study published this year [1], we used structural, cognitive, 
and physiological parameters to measure how the brain responds 
to ischemic stroke in the context of chronic renal failure. Our study, 
which utilized a prospective cohort of 431 participants, showed that 
24 months following stroke, those with chronic renal failure (CRF)
as determined by creatinine clearance (CCI < .60 ml/min) had a 
stronger association with cognitive decline than those without kidney 
dysfunction. Two known biomarkers of the aging brain, white matter 
hyperintensities (WMH) and cortical atrophy, along with different 
measures of cognitive impairment, were found to have a positive 
correlation with pre-stroke impaired renal function [1]. Previous 
studies have shown the strong association between kidney dysfunction, 
stroke and cognitive impairment [1-6]. However, researchers have 
not yet determined the link between CRF and cognitive decline in 
patients recovering from stroke. Our study expanded on previous 
works, including the widely cited Reasons for Geographic and Racial 
Differences in Stroke (REGARDS) study, which showed a strong 
association between cognitive impairment and kidney decline[1], 
[3,5]. In this commentary, we evaluate different mechanisms in which 
CRF may affect cognitive function post stroke and propose pathways 
through which CRF may inhibit brain recovery, helping us to narrow 
our focus on specific pathophysiological processes that may yield new 
approaches to therapy in future clinical trials.

Chronic Renal Failure and Cerebral Small Vessel Disease in 
Cognitive Impairment Post Stroke

Diabetes and hypertension in particular appear to be obvious 
targets for neuro-protection post stroke in the context of CRF, 
however our study and others [1,7,8] have shown consistent results 
of cognitive decline in CRF regardless of the specific etiology of 
kidney dysfunction. End-organ damage caused by long-term diabetes 
is attributed to advanced glycated end products (AGES) which 
are known to known microangiopathic effects including chronic 
renal failure, inflammation, retinopathy, stroke, hypertension, 
and coronary artery disease [9]. The buildup of AGES suppresses 
endothelial production of the beneficial effects of nitric oxide in 
cerebral vasculature and throughout the body [1,10], but this does 
not explain why there is worsened cognitive impairment post stroke. 
One small study performed by Laible et al. [11] on twelve patients did 
not find WMH to be related to renal disease as we found in our study, 
but it did determine that renal disease was associated with increasing 
amounts of cerebral microbleeds, a known marker of cerebral small 
vessel disease [12]. Microangiopathies, such as cerebral microbleeds, 
have been shown by Tang et al. [13] to have an inverse association with 
reversion of vascular cognitive impairment in stroke, suggesting signs 
of a microvascular vessel weakness also found in renal disease that 
may play a role leading to microhemorrhage in the brain parenchyma.

Hypertensive nephroangioscelerosis, the fibrous transformation of 
smooth muscle in arterial blood vessels, presents another mechanism 
to exclude from being the possible link between cognitive decline in
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stroke in renal disease, since it also damages the kidneys and has itself 
proven to be a source of stroke [14]. An interesting autopsy study 
conducted in France by Abboud et al describes the histopathological 
relationship between the kidneys and brain [14]. This study found 
that hypertensive nephroangiosclerosis is associated with stroke and 
a history of hypertension in 39.8% of patients, providing evidence of 
a structural connection between chronic renal damage and cerebral 
small vessel disease [5,14]. Parenchymal pathologies conversely 
did not show an association with nephroangiosclerosis, supporting 
our understanding that the process is governed by reno-vascular 
disorders such as hypertension and diabetes that result in a propensity 
for microbleeds and lacunar infarcts, which have also been linked 
to cognitive impairment [2,8,14,15]. We also note that based on 
the results of our study, creatinine clearance may function well as a 
marker for cognitive decline post stroke, and investigating metabolic 
and biochemical pathways involved in neurological regeneration that 
are affected by CRF may provide a clue as to its source [2,16–19].

CRF in the Context of Neurological Recovery from Stroke and the 
Metabolic Consequences on the Brain
           

Studies on brain regeneration and recovery after stroke can help 
us understand how the byproducts of kidney damage interrupt the 
resources that brain tissue, neurons and supporting cells need to 
recover from a traumatic episode, like an ischemic stroke, in areas 
such as the penumbra and related neural networks [2,16,19,20]. As 
described by Dancause et al and others, white matter shows increased 
axonal growth creating connections to new regions in the cortex 
after experiencing damage from ischemia or other processes [21,22]. 
However, in the context of kidney disease, axonal growth processes 
are inhibited by uremic plasma, which contains high concentrations 
of nitrogenous waste [20]. Braguer et al. [20] showed through in vitro 
experiments on the microtubule component of axon growth, that in 
uremic medium tubulin polymerization is inhibited but is reversed 
by the addition of the vitamin biotin. These experiments followed a 
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study by Yazidis et al. in which nine hemodialysis patients who were 
given 10 mg of biotin daily experienced improvement in a variety of 
neurological symptoms, including uremic neuropathy, “disorientation, 
speech disorders, memory failure, myoclonic jerks, flapping tremor, 
restless legs, paresthesia and difficulties in walking” underscoring the 
biochemical connection between neurological processes and renal 
function [23].

The brain parenchyma recovering from stroke is most susceptible 
to cognitive impairment because it is less resilient to the metabolic 
changes found in the context of chronic renal disease [1,2,16,24]. 
This increased risk of impairment is due to the vast effects of uremic 
toxins, including the release of inflammatory compounds, breakdown 
of the blood-brain barrier, autonomic dysfunction, down regulation 
of nitric oxide synthase, and induction of the vicious RAAS (renin-
angiotensin-aldosterone-system) cycle [2,19]. These processes 
concurrently propagate small vessel disease, end-organ damage and 
likely prevent full recovery of neurological networks lost in a damaged 
brain [7, 25] Kidney failure also affects the neurological physiology due 
to the kidneys’ role in managing toxins such as drugs and nitrogenous 
waste which can disrupt the synthesis of neurotransmitters, energy 
metabolism, and other routine cell processes [19,20,26].

Another example of neuro-metabolic changes caused by chronic 
kidney disease can be seen in the neurological recovery processes after 
brain damage in which the undamaged hemisphere compensates after 
stroke or other lesions [17]. These biochemical and neurohistochemical 
compensation processes that occur after damage different parts of 
the brain modulate the damage according to location. Specifically 
superficial areas show increased excitability ipsilaterally and deeper 
areas show increased excitability contralaterally via GABAA receptor 
modulation [27], which is then blocked by N-methyl-D-aspartate-
receptor antagonists [18]. Understanding neuromodulatory pathways 
such as these, particularly in the context of renal disease, could provide 
specific targets for therapy for stroke victims and those recovering 
from brain injury.

Conclusion

In sum, based on our recent study and others, we believe that 
investigating the metabolic pathways involved in brain recovery 
in addition to current research on hypertension and diabetes in 
stroke and cerebral small vessel disease may hold the missing link 
as to the role of chronic kidney disease in cognitive impairment 
post stroke. The prevalence of stroke and importance of cognitive 
function in CRF in medicine will impel continued research on this 
topic and hopefullyprovide a basis for novel clinical trials and early 
interventions in the future.
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