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 Metabolic engineering is generally defined as the targeted and 
purposeful alteration of cellular metabolic pathways to increase 
the cellular production of a certain substance [1]. Metabolic 
engineering of microorganisms has great potential for the low cost 
and environmentally friendly production of chemical feedstocks and 
novel compounds. 

   In eukaryotic cells a number of metabolic pathways are separated 
not only by means of different enzyme systems that catalyze their 
forth and back reactions (anabolism and catabolism), but also by 
multiple compartments separated from each other by membranes. 
The mitochondrial compartment plays a key role in energy and central 
metabolism of eukaryotic cells. The inner mitochondrial membrane 
is a selective barrier that controls energy producing pathways as 
well as carbohydrate, fat, and amino acid metabolism. Transport of 
metabolites (di- and tricarboxylates, amino acids, keto acids as well as 
nucleotides and coenzymes/cofactors) across the inner mitochondrial 
membrane is mostly carried out by a number of transporters that 
belong to the mitochondrial carrier family (MCF) [2,3]. The genome 
of the yeast S. cerevisiae encodes 35 proteins belonging to the MCF [4]. 
34 of them are localized to the inner mitochondrial membrane except 
one, Ant1p, which is a peroxisomal adenine nucleotide transporter 
[5]. The transport specificity of 20 of these carriers has been unveiled 
[6,7]. The function of the remaining 15 transporters is still unknown 
[2].

  Many metabolic engineering strategies rely on the manipulation of 
enzyme levels to achieve the amplification, disruption or addition 
of a metabolic pathway. Modification of expression level of specific 
intracellular transporters is an unexplored tool for both studying and 
engineering metabolism. It has been demonstrated that deletion or 
over expression of genes encoding mitochondrial carriers (MCs) can 
affect the subcellular concentration of their substrates causing a wide 
range of different phenotypes [6,8,9]. Consequently it is reasonable 
to hypothesize that also intracellular fluxes may result affected. 
Moreover, it is also possible that MCs might control the production 
rate of metabolites whose biosynthetic pathways are partially or 
completely located within mitochondria.

 The importance of fluxes of substrates and products across 
mitochondrial membrane has been demonstrated or postulated for 
a number of biotechnological processes. The production of citric acid 
and itaconic acid are two good examples.

  The fungus Aspergillus niger has an intrinsic ability to accumulate 
and secrete citric acid in specific culture conditions (i.e. sugar excess, 
acidity, nitrogen, phosphate, manganese and iron limitations) [10]. 
Although citric acid synthesis by A. niger has been described in 
details, the biochemical mechanism by which it reaches about 90% of 
final yield is still poorly understood. Citrate is synthesized by citrate 
synthase inside the mitochondrial matrix and, in specific conditions; 
it is exported out of mitochondria instead of being converted inside 
the organelle to cis-aconitate. The export of citric acid from the 
mitochondrial lumen into the cytosol is most probably catalyzed by 
a transporter belonging to the MCF (a tricarboxylate carrier) [11], 
whose function has been proposed to be essential for citric acid 
accumulation. Since this putative tricarboxylate carrier competes
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directly with aconitase for citrate, if its affinity for citrate were much 
higher than that of aconitase, then the carrier would export citrate out 
of the mitochondrial matrix. Alternatively the inhibition of the TCA 
cycle has been suggested as the biochemical mechanism explaining 
citrate accumulation, but no compelling evidence has been provided 
[10]. The tricarboxylate carriers of mammalian cells and yeasts export 
citrate from the mitochondria by counter transport with malate 
[12]. This could also happen in A. niger where malate is produced 
from oxaloacetate in the cytosol by malate dehydrogenase and is 
substantiated by the fact that malate accumulation has been shown to 
precede citrate secretion [10,13]. The A. niger citrate MC has not been 
identified. A BLASTP analysis reveals that A. niger genomes encodes 
at least three potential tricarboxylate carriers. The identification of 
these isoforms involved in citrate accumulation and their biochemical 
and physiological characterization are essential to understand and 
improve this biotechnological process.

 Itaconic acid is an important building block in the chemical 
industry and a platform chemical for the synthesis of potential 
biofuels such as 3-methyltetrahydrofuran [14]. Similarly to other 
organic acids such as citric acid or lactic acid, itaconic acid is mainly 
supplied by a biotechnological process employing in this case the 
fungus A. terreus [15]. The biosynthesis of itaconic acid involves 
the shuttling of intermediates between cytosol and mitochondria. 
A key enzyme of the itaconic production pathway, cis-aconitate 
decarboxylase (CadA), is localized in the cytosol, whereas the 
preceding enzymes in the pathway, namely citrate synthase and 
aconitase, which synthesize cis-aconitate, are placed in mitochondria 
[15]. Thus a mitochondrial transporter carrying cis-aconitate 
across the mitochondrial membrane appears to be important in the 
biosynthesis of itaconic acid. The importance of this transporter has 
been demonstrated by van der Straat et al. which have developed 
an A. niger strain capable of producing itaconic acid, employing 
the natural capacity of this fungus to secrete very high amounts of 
citric acid which shares with itaconate many steps of its biosythetic 
pathway [16]. These authors introduced the A. terreus itaconic acid
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biosynthetic cluster, consisting of the gene encoding for cis-aconitate 
decarboxylase, a mithocondrial transporter and a plasma membrane 
transporter, into A. niger. In particular, the only expression of a 
codon optimized cis-aconitate decarboxylase led to a low producing 
strain. The additional expression of the mithocondrial transporter 
gene resulted in an over 25-fold increased secretion of itaconic acid, 
pinpointing the importance of this mitochondrial transport activity 
for the itaconic acid production. Although the gene encoding this 
MC is known, the biochemical properties of this transporter have not 
been studied. These studies would be useful to further increase the 
production of itaconic acid.

  MCs might be of importance also in a new approach of metabolic 
engineering, the so called subcellular metabolic engineering, where 
an entire metabolic pathway is compartmentalized to mitochondria 
in order to increase the production of interest [17]. This approach 
reproduces the natural strategy of the eukaryotic cells (and rarely 
of prokaryotic) of creating confined regions (organelles and 
metabolosomes) which offer a more efficient way to increase metabolic 
fluxes [18]. Pathways that are naturally cytoplasmic might benefit 
from mitochondrial compartmentalization, because the confinement 
of enzymes and metabolites to subcellular compartments may result 
not only in an increase in their local concentrations but also in 
the ability to reduce the toxicity of pathway intermediates, bypass 
inhibitory regulatory networks or avoid competing pathways [17]. 
Thus, subcellular metabolic engineering has the potential to provide 
multiple mechanisms to improve the performance of engineered 
pathways. Recently subcellular metabolic engineering has been 
successfully applied to improve the production of branched-chain 
alcohols in yeast, by combining overexpression and mitochondrial 
targeting of the complete isobutanol biosynthetic pathway [17].

 The use of mitochondrion as an intracellular reactor for the 
production of bulk or fine chemicals can further increase the 
importance of MCs as rate controllers of the exchange of substrate 
and products in and out of mitochondria. Indeed, it is important to 
avoid bottlenecks in the traffic across inner mitochondrial membrane 
that can limit the metabolic flow of interest. In the previously cited 
production of branched-chain alcohols, pyruvate enters mitochondria 
where alcohols are produced and exported from. It is tempting to 
speculate that the whole process might be further improved increasing 
the pyruvate uptake into mitochondria. Very recently the proteins 
responsible for this biological activity have been identified [19,20]. In 
particular, in yeast three genes encoding the subunits of the pyruvate 
carrier, MPC1, MPC2 and MPC3, have been identified. Hence, their 
overexpression could increase the flux of pyruvate into mitochondria. 
This hypothesis remains to be tested.

   In conclusion, compartmentalization and the regulation of metabolic 
fluxes by controlling the expression of mitochondrial transporters, 
enabling to increase the substrate uptake in the mitochondrial matrix 
and the product export in the cytoplasm, can represent a crucial tool 
for metabolic engineering and strain development. More research is 
needed to determine to what extent metabolic fluxes are modified 
by changing of the expression level of specific MCs and to apply this 
knowledge to improve relevant biotechnological processes.
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