
Abstract

On the basis of the improved moving least-squares (IMLS) approximation, the improved element-
free Galerkin (IEFG) method is presented for two-dimensional advection-diffusion problems in this 
paper, Galerkin weak form of two-dimensional advection-diffusion problems is used to obtain the 
final discretized equations, the penalty method is used to apply the essential boundary conditions, and 
difference method for two-point boundary value problems is used for time discretization, then the IEFG 
method for two-dimensional advection-diffusion problems is presented. Two numerical examples are 
given to show that the IEFG method has higher computational efficiency.
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Introduction

    Meshless method is an important numerical method for science 
and engineering problems, and has developed rapidly in recent twenty 
years. Compared with traditional numerical methods based on mesh, 
the advantage of meshless method only need the information of the 
nodes in the problem domain, then it can obtain the solution with 
great precision for some problems, such as the large deformation and 
dynamic crack growth.

   The element-free Galerkin (EFG) method is one of the most 
important meshless methods, and it has been applied into many 
science and engineering problems [1-3]. The EFG method is based 
on the moving least-squares (MLS) approximation, which sometimes 
forms ill-conditional or singular matrix. In order to overcome 
the disadvantage of MLS approximation, Cheng, et al. proposed 
the improved moving least-squares (IMLS) approximation by 
orthogonalizing the basis function [4]. Using the IMLS approximation 
to construct shape function, the improved element-free Galerkin 
(IEFG) method are presented for potential problem [5], transient heat 
conduction [6], wave equation [7], fracture [8] and elastodynamics 
[9]. The IEFG method has higher computational efficiency than the 
EFG method with the same accuracy.

   In this paper, we introduce the IEFG method into the two-
dimensional advection-diffusion problems. The IMLS approximation 
is used to obtain the shape functions, Galerkin weak form of two-
dimensional advection-diffusion problems is used to obtain the final 
discretized equations, the penalty method is used to apply the essential 
boundary conditions, and difference method for two-point boundary 
value problems is used for time discretization, then the IEFG method 
for two-dimensional advection-diffusion problems is presented. Two 
numerical examples are given, and the numerical results are compared 
with the ones of the EFG method, which shows that the IEFG method 
in this paper can improve the computational efficiency.

The IEFG Method for Two-Dimensional Advection-
Diffusion Problems

   The governing equation of two-dimensional advection-diffusion 
problems is
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                                                                     , (                               )    (1)

with the following essential and natural boundary conditions
                                 , (             ),                                                             (2)

                                                                          , (          ),                        (3)

and the initial condition
                                      ,                                                                           (4)
where u(x,t)  is the field function,             is the given field function 
on the essential boundary     ,              is the given value on the natural 
boundary     ,                      is the boundary of the problem domain Ω , and
                  , f(x,t) is the source term; ki  is the diffusion efficient in the 
direction xi , and  νi is the advection efficient in the direction xi; u0  is 
known function; ni is the unit outward normal to the boundary  Γ in 
the direction xi .

The equivalent functional of equations (1) and (3) is

                                                                                                              (5)
Imposing essential boundary condition, i.e. equation (5) by the 

penalty method, we obtain the modified functional as

                                                                                                              (6)

where α  is the penalty factor.
From
                                                                                                               (7)
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the equivalent integral weak form can be obtained as

                                                                                                      ,            (8)
where

                                                                                                                   (9)

                                                                                                                 (10)

We select M nodes xI (I=1,2,...,M ) in plane domain of Ω , xI are the 
nodes with domains of influence that cover the point x , then we can 
use the function u(xI) to approximate the function u(x). At the time of  
t, the function u(x) at the node x1 is

                                                                                                             (11)

   From the IMLS approximation, the function can be expressed as

                                                                                                             (12)

where n  is the nodes number in the compact support domain of x.
                                                                                                             (13)

pT(x)=(pi) is the vector of basis function. In general, the linear and 
the quadratic basis function vectors in the plane domain are given by

                                                                                                             (14)

                                                                                                             (15)
And other matrices and vector are
                                                                                                             (16)

                                                                                                             (17)

                                                                                                             (18)

                                                                                                             (19)

                                                                                                             (20)
     

                                                                                                             (21)
where m is the number of basis function, w(x-xI) is a weighting 

function with compact support.

From equations (10) and (12), we have

                                                                                  (22)

                                                                                                             (23)

where

                                                                                                             (24)

                                                                                                             (25)

                                                                                                             (26)

Substituting equations (12), (22) and (23) into equation (8) yields

       
                                                                                                                (27)

By analyzing the integral terms in equation (27), we have
                                                                                                              (28)

                                                                                                             (29)

                                                                                                             (30)

                                                                                                             (31)

                                                                                                            (32)

                                                                                                           (33)

                                                                                                           (34)

                                                                                                           (35)
where
                                                                                                           (36)

                                                                                                           (37)

                                                                                                           (38)

                                                                                                           (39)

                                                                                                           (40)
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                                                                                     (41)

                                                                                     (42)

                                                                                     (43)
Substituting equations (28)-(35) into equation (27), we can obtain
                                                                                                            (44)

Because the         is arbitrary, we can obtain the following ordinary 
differential equations

                                                                                                             (45)

                                                                                                             (46)
                                                                     
                                                                                                             (47)
Equation (45) is a linear system of ordinary differential equation, 

in which time is the only independent variable. Suppose that the 
time step is ∆t, using the traditional difference method for two-point 
boundary value problems, we can establish the relation of ut+∆t and 
ut as

                                                                                                            (48)

Solving equation (45) for (∂u/∂t)t+∆t and (∂u/∂t), respectively, and 
substituting the results into equation (45), as C is independent of time, 
we obtain

                                                                                                             (49)

where θ is a time weighed coefficient, of which the different 
values correspond to different time difference forms. When θ=0, it 
is the forward difference scheme. When θ=1/2, it is the C-N (Crank-
Nicolson) scheme, and when θ=1, it is the backward difference 
scheme. In this paper, we use the C-N scheme.

Numerical Examples

In order to verify the advantage of the IEFG method presented in 
this paper for two-dimensional advection-diffusion problems, we 
present two numerical examples in this section, and compared the 
computational accuracy and efficiency of the IEFG method with the 
ones of the EFG method.

The relative error is defined as

                                                                                                            (50)

where

                                                                                                            (51)
is the L2 norm of the error.

In this section, the node distribution for each example is regular, 
and the linear basis function is used. Moreover, 4×4 Gaussian points 
are used for the Gaussian quadrature in each integration cell.

The first example we considered is the two-dimensional advection-
diffusion problem with source term. The governing equation is                                                                                                                                               
                                                                                                                                                                                                                                                                                            

                                                                                 (52)
with the initial condition

                                                                                                             (53)
and the boundary condition

                                                                                                             (54)
where

                                                                                                             (55)
The analytical solution of this problem is

                                                                                                                 (56)
The problem domain is Ω =[0,1]×[0,1], and T is the total time. In this 
paper, we select           .

Using the EFG method to solve this example, 11*11 regularly 
distributed nodes are selected, the background integral grid is 10*10, 
∆t=0.01, dmax =1.0001, α=6.0×1013, and the quartic spline function 
is used as the weight function, then the relative errors are 0.0748%, 
0.0980%, 0.0972%, 0.0956% and 0.0944% when T are 0.1s, 0.3s, 0.5s, 
0.7s and 0.9s, respectively; and the corresponding CPU times are 
5.04s, 13.2s, 21.4s, 29.6s, and 39.9s respectvely.

   In order to test and verify the effectiveness of the IEFG method, we 
select ∆t=0.01, and 11*11 regularly distributed nodes are selected, the 
background integral grid is 10*10, dmax=1.00001, α=1.2×1014 , and the 
quartic spline function is used as the weight function, the numerical 
solutions can be obtained with the relative errors of  0.0746%, 0.0955%, 
0.0945%, 0.0928% and 0.0916% when T are 0.1s, 0.3s, 0.5s, 0.7s and 
0.9s, respectively, and the corresponding CPU times are 4.43s, 11.5s, 
18.6s, 25.7s and 32.8s, respectively. The numerical solution and 
analytical one are in agreement very well (see Figures 1-2).

Then we can see that the IEFG method can obtain higher 
computational efficiency under the condition of same node 
distribution with similar computational accuracy.

The second example we considered is the following two-dimensional 
advection-diffusion equation
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                                                                                    (57)
with the initial condition
                                                                                                                (58)

and the boundary conditions

                                                                                                                 (59)

                                                                                                                 (60)

                                                                                                                 (61)

                                                                                                                 (62)
The problem domain is Ω=[0,1]×[0,1].

The analytical solution of this problem is
                                                                                                             (63)

Where

                                                                                                                 (64)

                                                                                                                 (65)

We set                                                  ,  
k1=1.4, k1=1.7, ν1= ν2=1 and a=b=1, for simplicity. When using the 
EFG method to solve this example, 11*11 regularly distributed nodes 
are selected, the background integral grid is 10*10, ∆t=0.01, dmax 
=1.16, α=6.3×106, and the cubic spline function is used as the weight 
function, then the relative errors are 0.0064%, 0.0078% and 0.0092% 
when T are 0.1s, 1s, 3s, respectively; and the corresponding CPU 
times are 1.3s, 5s and 13s respectively.

When using the IEFG method to solve this example, the same 
parameters are selected and the cubic spline function is used as the 
weight function, the numerical solutions can be obtained with the 
relative errors of 0.0064%, 0.0078% and 0.0092%, when T are 0.1s, 1s 
and 3s, respectively; and the corresponding CPU times are 1.23s, 4.4s 
and 11.4s, respectively. The numerical solution and analytical one are 
in agreement very well (see Figures 3-4).

As an extensive investigation of this example, we select k1=1.4, 
k2=1.7, ν1= ν2=1, a=b=1,                                                      and
                                                           .

Using the EFG method to solve this example, 11*11 regularly 
distributed nodes are selected, the background integral grid is 10*10, 
∆t=0.01, dmax =1.15, α=8.8×105, and the cubic spline function is 
used as the weight function, then the relative errors are 1.4419%, 
1.6156% and 1.8028% when T are 0.1s, 1s and 3s, respectively; and the 
corresponding CPU times are 1.5s, 5.3s and 12.7s respectively.

When using the IEFG method to solve this example, the same 
parameters are selected and the cubic spline function is used as the 
weight function, the numerical solutions can be obtained with the 
relative errors of 1.4419%, 1.6156% and 1.8028% when T are 0.1s, 1s 
and 3s respectively; and the corresponding CPU times are 1.2s, 4.3s 
and 11.2s, respectively. The numerical solution and analytical one are 
in good agreement (see Figures. 5-6).

We can see again that under the condition of same node distribution, 
similar accuracy can be obtained when using two methods to solve 
the advection-diffusion problems. However, the IEFG method has 
higher computational efficiency.

Conclusion

On the basis of the improved moving least-square (IMLS) 
approximation, the IEFG method for two-dimensional advection-
diffusion problems is presented in this paper.
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Figure 2: The field function distribution with time along the  x2 axis.
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Figure 3: The field function distribution with time along the x1  axis.

Figure 4: The field function distribution with time along the x2  axis.
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Two numerical examples are given, and the numerical results of 
the IEFG method are compared with the ones of the EFG method. 
It is shown that the numerical solutions of the IEFG method are in 
good agreement with the analytical ones. Moreover, compared with 
the EFG method, the IEFG method can save the corresponding CPU 
time under the condition of same node distribution with similar 
computational accuracy.
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Figure 5: The field function distribution with time along the  x1 axis.

Figure 6: The field function distribution with time along the x2  axis.
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