
Abstract

Nonnegative matrix factorization (NMF), also known as nonnegative matrix approximation, is a group 
of methods in multivariate statistical analyses, where matrix X is factorized into two matrices W and H, 
with the property that all three matrices have no negative elements. This produces matrices that are 
easier to inspect and interpret. NMF is often referred to as an unsupervised machine learning technique 
for pattern recognition due to its clustering capability, with a wide range of applications in engineering, 
genomics, bioinformatics, and in processing audio spectrograms and textual data. The purpose of this 
article is to present the essence of the NMF technique and its potential use in characterizing the observed 
pattern and structure in a benthic macroinvertebrate community. Applications are demonstrated with 
reference to twelve years of benthic macroinvertebrate survey data collected from an ultra-oligotrophic 
reach of the Kootenai River in Northern Idaho and Western Montana downstream from a hydro-electric 
dam.
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Introduction

Nonnegative matrix factorization (NMF) is a useful method for 
decomposition of multivariate data. NMF may be compared to 
other multivariate decomposition/factorization techniques such as 
principal component analysis and vector quantization, however, 
due to different implementation of imposed constraints, it leads to a 
different representation of data. The original articles by Pentti Paatero 
[1,2] on “positive matrix factorization” initiated a flurry of research 
articles in this area. However, it was the article in Nature by Daniel Lee 
and Sebastian Seung [3] that established the use of NMF in its modern 
formulation for scientific investigations. 

Subsequently, it has been shown that different formulations of 
NMF are related to a more general probabilistic model, multinomial 
PCA [4], and that when NMF is obtained by minimizing the 
Kullback–Leibler divergence, it is in fact equivalent to multinomial 
PCA (probabilistic latent semantic analysis), trained by maximum 
likelihood estimation [5]. Furthermore, it has been established that 
NMF with the least-squares objective is equivalent to a relaxed form 
of K-means clustering [6], hence, providing a foundation for use of 
NMF in data clustering.

NMF has a wide range of applications in science, engineering and 
medicine. It has also been quite extensively used in bioinformatics 
investigations for the purpose of clustering gene expressions and 
determining the genes most representative of the clusters [7,8,9]. 
Most recently, NMF has been used in analysis of human milk 
oligosaccharides, HMOs, across various geographical populations in 
a nutritional study [10].

In this paper, NMF is utilized to investigate the structure of a 
benthic macroinvertebrate community in a large regulated river. The 
clustering of sampling units, based on multiple macroinvertebrate 
metrics across river zones is explored and the potential impact of 
nutrient supplementation on a set of specific macroinvertebrate 
response metrics is evaluated. Applications are demonstrated using 
twelve years of replicated benthic macroinvertebrate data collected 
from the Kootenai River in northern Idaho and northwestern
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Montana, as part of the Kootenai River Bio-monitoring Project 
conducted by the Kootenai Tribe of Idaho.

Let r > 0 be an integer, and X a matrix with n rows, the measured 
features, and m columns, the samples with non-negative entries. NMF 
entails finding an approximation:

                        X ~ WH                                 (1)

where W, H are n × r and r × m non-negative matrices, respectively. 
Since the objective is usually to reduce the dimension of the original 
data, the factorization rank, r, is often chosen so that r << min(n, m).

Simply put, equation (1) states that each column of X (i.e. the 
observed features of each sample) is approximated by a non-negative 
linear combination of the columns of W (i.e. the basis components), 
where the coefficients are given by the corresponding column of H (i.e. 
the mixture coefficients). The NMF algorithm iteratively computes 
and updates an approximation of (1), commonly by randomly 
initializing matrices W and H, to minimize a divergence functional. 
Mathematically, the NMF algorithm estimates matrices W and H as a 
local minimum of the following optimization problem:

min {δ(X, WH) + ρ(W, H)}                                         (2)

where δ is defined as a loss function measuring the quality of the 
approximation. Loss functions are often based on the Frobenius norm or 
the Kullback-Leibler divergence [11,12]. ρ is a regularization function,

https://doi.org/10.15344/2456-8155/2017/120
https://doi.org/10.15344/2456-8155/2017/120
https://doi.org/10.15344/2456-8155/2017/120


Int J Appl Exp Math                                                                                                                                                                                                IJAEM, an open access journal                                                                                                                                          
ISSN: 2456-8155                                                                                                                                                                                                      Volume 2. 2017. 120  

utilized to ensure desirable properties on matrices W and H, such as 
smoothness or sparsity. Bayesian formulations of the optimization 
problem in (2) are also possible, depending on one’s prior knowledge 
concerning the data and the field of application [13].

Several software packages are available to conduct the necessary 
computations for the NMF algorithm, including those recommended 
by Lee and Seung [11], Brunet, et al. [14], and Zhang [15]. In this 
article, we have employed an R® shared package, NMF (version 
0.20.6), originally developed by Renaud Gaujoux and Cathal Seoighe 
in 2010 [16]. All other statistical computations were carried out using 
SAS version 9.4 (2012).

Empirical Results and Demonstrations

Data description

The Kootenai River is located along the junction of the Idaho, 
Montana and Canadian borders. The river runs south and west 
from Canada to Montana and Idaho, then returning back north to 
Canada. A large hydro-electric facility, Libby Dam, impedes the river 
flow near the town of Libby, MT and has resulted in oligotrophic 
conditions downstream. In 2002, fourteen biomonitoring sites 
were established along the river to monitor water quality, primary 
production, benthic invertebrates, and fish populations (Figure 1). 
Of the variables measured, the benthic macroinvertebrate data for 
ten selected sites will be considered for analysis here. As a means 
of mitigating the biological impacts due to operation of the dam, a 
nutrient addition (phosphorus) program was initiated at the ID – MT 
border in 2005 and has continued during the June-September time 
frame of each subsequent year [17]. Based on this nutrient addition 
program, three river zones, encompassing the ten selected sites, were 
designated as: the Upper River Zone (URZ, sites KR12, KR11, and 
KR10: an untreated control region above the nutrient addition point); 
the Nutrient Addition Zone (NAZ, sites KR9, KR7, and KR6: a region 
immediately adjacent and downstream of the nutrient addition point), 
and; the Lower River Zone (LRZ, sites KR4, KR3, KR2, and KR1: a 
river section located further downstream from the nutrient addition 
point and having different flow and channel conditions.

Benthic macroinvertebrate sampling was typically carried out 
multiple times per year, although the exact timing and number 
of samples varied depending on river conditions and project 
requirements. In order to establish a common sampling timeframe 
across years, the months of July through November were selected for 
analysis. These months were the most populated with available data 
and, because nutrient addition was initiated approximately in June 
of each year, these months were considered as the most biologically 
relevant for the benthic invertebrate communities of interest. The 
years spanning 2003 through 2015 were selected for analysis as they 
encompassed several years of both pre and post-nutrient addition 
periods.

At each sampling event, 5-6 replicates (random samples) were 
taken at each site and date. Each sample was sorted and identified 
to the species level or the nearest taxonomic grouping of benthic 
macroinvertebrates. From this taxonomic information, additional 
responses such as total abundance, total biomass, and community 
diversity metrics were determined. From a large collection of potential 
macroinvertebrate variables, including abundance and richness 
measures, a set of six metrics were determined to be important 
for the assessment of the effect of nutrient addition on the benthic 
community [18,19], and will therefore be used in the subsequent NMF 
analyses. These metrics were: total Biomass, Chironomidae (midges) 
abundance, Filterer abundance, total taxa abundance excluding 
sub-taxa of Chironomidae and Oligochaeta (worms) (NCO), 
Ephemeroptera (mayflies) abundance, and NCO richness. For each 
metric, the average value was then computed for each year-month-
site combination and these data were further classified according to 
the nutrient addition period (Pre: 2003-2005; or Post: 2006-2015) and 
river zone as defined previously. Finally, the data for each river zone 
were arranged in matrix form with columns and rows corresponding 
to year-month-sites and response metrics, respectively.

NMF analysis

All procedures described here were carried out separately for each 
nutrient addition period in each river zone, however, for the purposes 
of demonstration, only the results for the Nutrient Addition Zone 
(NAZ) will be provided. The corresponding results for the LRZ and 
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Figure 1: Map of the Kootenai River Bio-monitoring Project. River flow proceeds from right (east) to left (west).



URZ are given in the supplementary materials (supplementary files, 
1 and 2). 

An initial assessment of the NMF space for each data set was 
completed to determine the rank, r, or number of basis components 
sufficient to describe the data matrices. Through sequential NMF 
estimations from r = 2 to 5, scree plots describing the average model 
residuals versus the model rank, r, were developed (Figure 2). In 
both the Pre and Post-nutrient addition periods, the residual value 
drops substantially after two basis components, hence, three basis 
components were deemed adequate to describe the data matrices.

Following rank determination, full NMF analyses were conducted 
for the Pre and Post nutrient addition periods in each river zone. A 
primary outcome of NMF analysis is the quantification of the r basis 
component coefficients, which make up the matrix W. While the 
ordering of the basis components does not reflect their importance, 
the relative magnitude of the coefficients within each basis component 
relates to the contribution each of the constituent metrics makes to a 
basis. Typically, these basis coefficients are visually displayed in the 
form of a heat map (basis map). In this example, the maps for Pre 
and Post-nutrient addition for the NAZ are shown in Figures 3 and 4, 
respectively. Within each basis (columns in the heat map), the darker 
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Figure 2: NMF residual scree plots for the Nutrient Addition Zone in the A) Pre and B) Post-nutrient addition periods.

Figure 3: Basis map for NMF analysis of Pre nutrient addition period for the Nutrient Addition River Zone. Darker 
colors indicate larger loadings for specific metrics (rows) within each of the three basis components (columns). Edge 
colors represent the linkage between basis components and metrics.
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colors indicate higher coefficient loadings for the specified metrics 
(rows in the heat map). For example, in the Pre-nutrient addition 
heat map (Figure 3), basis 1 has a relatively higher contribution from 
the Ephemeroptera abundance metric, while the second and third 
components have high loadings on Chironomidae and Filterers 
abundances, respectively. Taken jointly, one can conclude that these 
three classifications are driving metrics in the response patterns in 
the Pre-nutrient dataset. Of these, the Chironomidae abundance 
response is dominant.

In the Post-nutrient addition NMF heat map (Figure 4), a similar 
pattern of loading is seen, however, the relative magnitude of the same 
metrics are higher, suggesting that nutrient addition had an influence 
on the response patterns for these categories. Of the three metrics, 
the Chironomidae and Filterer classifications are the most responsive, 
which may be expected as nutrient addition enhances the algae 
growth on which they feed.

One means of quantifying metrics across all basis components 
is the NMF (gene) score as described by Kim and Park [7]. This 
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value is computed from the individual coefficients of W, and it is a 
real value ranging from 0.0 to 1.0, proportional to the probability of 
contribution of a specified metric (factor) across basis components. 
A higher score indicates a larger contribution for a specific metric. 
The NMF scores for this scenario are given in Table 1. As expected, 
the three metrics identified earlier, Filterer abundance, Chironomidae 
abundance, and Ephemeroptera abundance, show the largest score 
values within each nutrient addition period, with the Chironomidae 
metric being dominant. The change in scores across periods is also 
informative. Here, the scores for Ephemeroptera and Chironomidae 
abundances show little change after nutrient addition. The score for 
the filterer abundance, however, shows a substantial increase from 
0.16 in the Pre-nutrient addition period to 0.63 in the Post nutrient 
addition period, suggesting that the filterer taxonomic group is being 
impacted by the nutrient addition treatment. It is also notable that 
the metrics for NCO richness and total Biomass have decreased in 
score values and contribute little to the underlying pattern in the Post 
nutrient addition period.

Figure 4: Basis map for NMF analysis of Post nutrient addition period for the Nutrient Addition River Zone. Darker 
colors indicate larger loadings for specific metrics (rows) within each of the three basis components (columns). Edge 
colors represent the linkage between basis components and metrics.

Period Filterers Ephemeroptera Chironomidae NCO_Richness NCO Biomass

Pre-NA 0.1625 0.4696 0.9158 0.3711 0.0875 0.0710

Post-NA 0.6269 0.4379 0.8673 0.0641 0.2780 0.0107
Table 1: Pre and Post-nutrient addition (Pre-NA; Post-NA) NMF scores for the Nutrient Addition River Zone.
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Figure 5: Trend and scatter plots across months in the Nutrient Addition River Zone for the six macroinvertebrate metrics A) Biomass, B) 
Chironomidae abundance, C) Ephemeroptera abundance, D) Filterer abundance, E) NCO abundance, and F) NCO richness. Red markers and 
dashed lines indicate the Pre-nutrient addition period and blue colors and solid lines indicate the Post-nutrient addition period.
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It is also useful to augment the NMF analyses with an examination 
of the raw data patterns involved. Here, trend and scatter plots are 
used to assess data patterns across months for each nutrient addition 
period within NAZ. These plots are given in Figure 5. In panels 5B, 5C, 
and 5D, corresponding to Chironomidae abundance, Ephemeroptera 
abundance, and Filterer abundance, respectively, there are notable 
changes in the response patterns across months, particularly in 
the Post-nutrient addition period, all of which correspond to the 
previous NMF results. Note that, in NMF analysis, attention is drawn 
to changes in the overall pattern of the data, not necessarily their 
magnitudes. For example, in panels 5A and 5F, corresponding to total 
biomass and NCO richness, there is a sizable shift in the magnitude 
of the responses across periods moving from the Pre to Post-nutrient 
data sets. Within each period, however, the trends are relatively flat. 
This corresponds to the limited response of these metrics in the NMF 
analysis (light colors in Figures 3 and 4; lower score values in Table 1). 
In contrast, those metrics showing the greatest response in the NMF 
analyses also showed the greatest variation among months.

Conclusion

Nonnegative matrix factorization is a useful and powerful technique 
for pattern recognition, particularly in high dimensional data. In 
many biological and ecological applications, dimension reduction 
is crucial for efficient representation and interpretation of the data. 
In this study, we employed NMF to describe changes in a benthic 
macroinvertebrate community structure at the aggregated level 
following a nutrient enhancement treatment. It is important to note 
that each of the identified macroinvertebrate metrics at the aggregated 
level is comprised of many taxonomic categories, with varying degree 
of potential contribution to the underlying pattern and variability. 
For example, the family Chironomidae encompasses 73, 84 and 57 
identified taxonomic categories at the genus and species level, for the 
lower, nutrient addition, and upper river zones, respectively, across all 
years and sampling dates. It will be very informative to perform NMF 
at this (higher dimension) level of taxonomy and identify specific taxa 
within the Chironomidae family (midges) responsible for the observed 
pattern in the data. The authors are currently conducting the required 
analyses and intend to report the results in future publications.

Competing Interests

The author declares that they have no competing interests.

References
1. Paatero P, Tapper U (1994) Positive matrix factorization: A non-negative 

factor model with optimal utilization of error estimates of data values. 
Environmetrics 5: 111-126. 

2. Paatero P (1997) Least-squares formulation of robust non-negative factor 
analysis. Chemometrics and Intelligent Laboratory Systems 38: 223-242. 

3. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative 
matrix factorization. Nature 401: 788-791. 

4. Buntine W (2002) Variational Extensions to EM and Multinomial PCA. Proc. 
European Conference on Machine Learning (ECML-02). LNAI 2430: 23-34. 

5. Gaussier E, Goutte C (2005) Relation between PLSA and NMF and 
Implications. Proc. 28th international ACM SIGIR conference on research 
and development in information retrieval (SIGIR-05). pp. 601-602.

6. Ding C, He X, Simon HD (2005) On the equivalence of nonnegative matrix 
factorization and spectral clustering. Proc. SIAM Int'l Conf. Data Mining, 
pp. 606-610. 

7. Kim H, Park H (2007) Sparse non-negative matrix factorizations via 
alternating non-negativity-constrained least squares for microarray data 
analysis. Bioinformatics 23: 1495-1502. 

Int J Appl Exp Math                                                                                                                                                                                                IJAEM, an open access journal                                                                                                                                          
ISSN: 2456-8155                                                                                                                                                                                                      Volume 2. 2017. 120  

       Page 6 of 6

8. Devarajan K (2008) Nonnegative matrix factorization: An analytical and 
interpretive tool in computational biology. PLoS Computational Biology 4: 
e1000029. 

9. Schwalbe EC, Williamson D, Lindsey JC, Hamilton D, Ryan SL, et al. 
(2013) DNA methylation profiling of medulloblastoma allows robust sub-
classification and improved outcome prediction using formalin-fixed 
biopsies. Acta Neuropathol 125: 359-371. 

10. McGuire MK, Meehan CL, McGuire MA, Williams JE, Foster J, et al. 
(2017) What's normal? Oligosaccharide concentrations and profiles in milk 
produced by healthy women vary geographically. Am J Clin Nutr 105: 1086-
1100.

11. Lee DD, Seung HS (2001) Advances in neural information processing 
systems, pp 556-562. 

12. Cichocki A, Zdunek R, Amari S (2006) New Algorithms for non-negative 
matrix factorization in applications to blind source separation. Acoustics, 
Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. IEEE 
International Conference 5: V-621-V-624. 

13. Cemgil AT (2007) Bayesian inference for nonnegative matrix factorization 
models. Computational Statistics & Data Analysis 52: 155-173. 

14. Brunet JP, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern 
discovery using matrix factorization. Proc Natl Acad Sci U S A 101: 4164-
4169. 

15. Zhang J, Wei L, Feng X, Ma Z, Wang Y (2008) Pattern expression 
nonnegative matrix factorization: algorithm and applications to blind source 
separation. Computational intelligence and neuroscience 2008: 168769.

16. Gaujoux R, Seoighe C (2010) A flexible R package for nonnegative matrix 
factorization. In: BMC Bioinformatics 11: 367. 

17. Holderman C, Hoyle G, Hardy R, Anders P, Ward P, et al. (2009) Libby 
Dam Hydro-electric Project Mitigation: Efforts for Downstream Ecosystem 
Restoration. In Section C-4 of 33rd International Association of Hydraulic 
Engineering and Research Congress, pp. 6214-6222. 

18. Shafii B, Price WJ, Minshall WG, Holderman C, Anders PJ, Lester G, et 
al. (2013) Characterizing benthic macroinvertebrate community responses 
to nutrient addition using NMDS and BACI analyses. Applied Statistics in 
Agriculture, W. Song (Ed). Kansas State University, Manhattan, Kansas, 
pp.64-79. 

19. Minshall GW, Shafii B, Holderman C, Price JW, Holderman C (2014) 
Effects of nutrient replacement on benthic macroinvertebrates in an ultra-
oligotrophic reach of the Kootenai River, 2003-2010. Freshwater Science 
33:1009-1023. 

http://onlinelibrary.wiley.com/doi/10.1002/env.3170050203/abstract
http://onlinelibrary.wiley.com/doi/10.1002/env.3170050203/abstract
http://onlinelibrary.wiley.com/doi/10.1002/env.3170050203/abstract
http://www.sciencedirect.com/science/article/pii/S0169743996000445
http://www.sciencedirect.com/science/article/pii/S0169743996000445
https://www.ncbi.nlm.nih.gov/pubmed/10548103
https://www.ncbi.nlm.nih.gov/pubmed/10548103
http://dl.acm.org/citation.cfm%3Fid%3D650047
http://dl.acm.org/citation.cfm%3Fid%3D650047
http://dl.acm.org/citation.cfm%3Fid%3D1076148
http://dl.acm.org/citation.cfm%3Fid%3D1076148
http://dl.acm.org/citation.cfm%3Fid%3D1076148
http://ranger.uta.edu/~chqding/papers/NMF-SDM2005.pdf
http://ranger.uta.edu/~chqding/papers/NMF-SDM2005.pdf
http://ranger.uta.edu/~chqding/papers/NMF-SDM2005.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17483501
https://www.ncbi.nlm.nih.gov/pubmed/17483501
https://www.ncbi.nlm.nih.gov/pubmed/17483501
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447881/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447881/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447881/
https://www.ncbi.nlm.nih.gov/pubmed/23291781
https://www.ncbi.nlm.nih.gov/pubmed/23291781
https://www.ncbi.nlm.nih.gov/pubmed/23291781
https://www.ncbi.nlm.nih.gov/pubmed/23291781
https://www.ncbi.nlm.nih.gov/pubmed/28356278
https://www.ncbi.nlm.nih.gov/pubmed/28356278
https://www.ncbi.nlm.nih.gov/pubmed/28356278
https://www.ncbi.nlm.nih.gov/pubmed/28356278
http://dl.acm.org/citation.cfm%3Fid%3D1592515
http://dl.acm.org/citation.cfm%3Fid%3D1592515
https://www.ncbi.nlm.nih.gov/pubmed/15016911
https://www.ncbi.nlm.nih.gov/pubmed/15016911
https://www.ncbi.nlm.nih.gov/pubmed/15016911
https://www.hindawi.com/journals/cin/2008/168769/cta/
https://www.hindawi.com/journals/cin/2008/168769/cta/
https://www.hindawi.com/journals/cin/2008/168769/cta/
https://www.ncbi.nlm.nih.gov/pubmed/20598126
https://www.ncbi.nlm.nih.gov/pubmed/20598126
http://www.fishsciences.net/reports/2009/Libby_Dam_Hydroelectric_Project_Mitigation.pdf
http://www.fishsciences.net/reports/2009/Libby_Dam_Hydroelectric_Project_Mitigation.pdf
http://www.fishsciences.net/reports/2009/Libby_Dam_Hydroelectric_Project_Mitigation.pdf
http://www.fishsciences.net/reports/2009/Libby_Dam_Hydroelectric_Project_Mitigation.pdf
http://www.journals.uchicago.edu/doi/abs/10.1086/677900
http://www.journals.uchicago.edu/doi/abs/10.1086/677900
http://www.journals.uchicago.edu/doi/abs/10.1086/677900
http://www.journals.uchicago.edu/doi/abs/10.1086/677900

