
Abstract

In this paper, we study and generalize a preconditioned modified Hermitian and skew-Hermitian 
splitting (PMHSS) iteration method for solving large sparse complex symmetric linear systems with 
multiple right-hand sides. Under suitable conditions, we show the new global iteration method is 
unconditionally convergent. Moreover, an inexact version which employs global conjugate gradient (Gl-
CG) method or preconditioned Gl-CG (PGl-CG) as its inner process is constructed and its convergence 
property is analyzed. Finally, numerical experiments show the effectiveness and robustness of the new 
global iteration method and the PMHSS preconditioner, in comparison with other popular global Krylov 
subspace methods.
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Introduction

In many scientific and engineering problems, such as electro-
magnetics scattering applications [19], finite-element discretizations 
of time-harmonic acoustic wave problem [13] and Maxwell's equation 
[7], we often require the solution of large complex symmetric linear 
systems with the same coefficient matrix and different right-hand 
sides 

where                     is complex symmetric matrix, 

              ,                                                     , and s << N. We assume that

A = W+iT , where                                         are positive semi-definite symmetric  
matrices, and at least one of them is positive definite,                    denotes 
the imaginary unit.

When memory is not a concern and the coefficient matrix can be 
factorized efficiently, the direct methods, such as LU decomposition 
[17] method, are very popular and efficient. However, the direct 
methods become expensive and prohibitive for large systems 
arising from discretizations of three-dimensional physical models. 
Therefore, iterative techniques, such as Krylov subspace methods, 
become popular for solving this class of complex symmetric linear 
systems. Recently, block methods have been developed to deal with 
such problems. In [7], Boyse and Seidl proposed the block QMR (Bl-
QMR) method based on block Lanczos method. The Bl-QMR method 
is theoretically superior to the block biconjugate gradient (Bl-BCG)
[15] method and often exhibits a nearly monotonically decreasing 
residual norm. Molhotra, Freund and Pinsky [13] have developed a 
J-symmetric variant of the Bl-QMR method that includes the complex 
symmetric version of Bl-QMR as a special case. Some suitable 
preconditioners and deflation techniques have been employed to 
enhance the convergence property. Simoncini and Gallopoulos [20] 
designed the block QMRCG-like and block QMR Lanczos methods 
based on the indefinite bilinear form. Block GMRES (Bl-GMRES) 
method [21] and its variants [1,8,10,14] were studied by some authors 
for solving the problem (1). Some other effective iteration methods, 
including global Krylov subspace methods and seed methods, have 
also been studied, see [9,11,12,16,18,22,23] for more details.

Recently, Bai et al.[4,5] considered a class of complex symmetric 
linear systems
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where                    , and                          are real, symmetric and posi- 
tive semidefinite matrices with at least one of them, e.g.,  being 
positive definite. W By making use of the special structure of the 
coefficient matrix Ax, Bai et al. [4] developed the modified Hermitian 
and Skew-Hermitian splitting (MHSS) iteration method based on the 
HSS [2] iteration method. To accelerate convergence rate of the MHSS 
iteration method, they established the PMHSS [5] iteration method. 
Under suitable conditions, the PMHSS iteration method converges 
unconditionally. Furthermore, numerical experiments have shown 
the PMHSS iteration method and PMHSS preconditioner can lead to 
better computing efficiency than other iteration methods.

In this paper, motivated by the advantage of the PMHSS iteration 
method [5], we derive a new iteration method for solving the problem 
(1). This iteration method is a matrix variant of the PMHSS iteration 
method [5], named as the global PMHSS (Gl-PMHSS) method. 
Analogous to the PMHSS iteration method, the problem of (1) can 
be decomposed two linear sub-systems with real and symmetric 
positive definite coefficient matrices. Moreover, like the PMHSS 
iteration method, we show the Gl-PMHSS iteration method also 
converges unconditionally under the condition that both W and T  
are symmetric positive semi-definite matrices, at least, one of them is 
positive definite matrix. An upper bound on the contraction factor of 
the Gl-PMHSS iteration method and the optimal value of the iteration 
parameter α  are analyzed. In addition, the inexact Gl-PMHSS (IGl-
PMHSS) iteration method which employs the Gl-CG method or PGl-
CG method as its inner iteration is established, and its convergence 
property is also studied in detail. Numerical experiments show the 
effectiveness and robustness of the Gl-PMHSS iteration method 
and the IGl-PMHSS iteration method. The PMHSS preconditioner 

AX B=
N NA ×∈ (1) ( )[ ,..., ]s N sX x x ×= ∈

(1) ( )[ ,..., ]s N sX x x ×= ∈ (1) ( )[ , , ]s N sB b b ×= ∈ 
, N NW T ×∈

1i = −

(1)

( )Ax W iT x b= + =

, Nx b∈ , N NW T ×∈
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combined with global Krylov subspace methods such as global 
GMRES (Gl-GMRES) method, global BiCGSTAB (Gl-BiCGSTAB) 
method also demonstrates mesh-independent and parameter 
insensitive convergence properties.

The organization of the paper is structured as follows. In section 2, 
the Gl-PMHSS iteration method is established and its convergence 
properties are analyzed. In section 3, we propose the inexact Gl-PMHSS 
iteration method and study its implementation and convergence 
properties. Section 4 is devoted to numerical experiments. Finally, we 
make some conclusions and remarks in section 5.

Methodology 

This research is studied the wave height over the gulf of Thailand 
using the SWAN model during 15 November 2013 at 0000 UTC to 18 
November 2013 at 0000 UTC as shown in Figure 2. It covers

and 

Next, we assume that the matrix                 be symmetric positive 
definite and define

Therefore, the problem (1) can be equivalently transformed into

where                                              , and                                 are real, symm-
etric and positive semidefinite matrices, with     being positive definite.

Applying the same approach suggested in [5], we have the following 
two new fixed-point systems which described as follows:

and

Based on the above results, we can easily give the global PMHSS 
(Gl-PMHSS) iteration method as follows.

Algorithm 1: The Gl-PMHSS iteration method

1. Choose                          be an arbitrary initial guess;

2. For K = 0,1,2,... until                               converges;

3. Compute

where α  is a given positive constant and                    is a prescribed 
symmetric positive definite matrix;

Because                                               are symmetric positive definite matrices, T Є              
             is symmetric positive is symmetric positive semidefinite matrix  
and α is real positive constant, thus the matrices αV+W and αV +T 
are both symmetric positive definite. This implies that it is possible 
to solve the two linear sub-systems at each step of the Gl-PMHSS 
iteration by direct methods or global conjugate gradient (Gl-CG) [18] 
method.

After applying the kronecker product and straight forward 
derivations, we can reformulate the iteration scheme (8) into the 
standard form

where

and

Note that                           and                           . Using the result introduced 
in [5], the coefficient matrix   can be splitted into

where                                                                      and                                    . 

                                                                              . Therefore, the Gl-PMHSS 

iteration scheme is induced by the matrix splitting (12). Moreover,  
the splitting matrix F(V; α)  can be used as a preconditioner for 
the complex symmetric matrix                , referred as the PMHSS 
preconditioner.

  
Using the Theorem 2.1 and Corollary 2.1 in [4], we can prove the 

convergence property of the Gl-PMHSS iteration method for solving 
the problem (1).

Theorem 1. Assume that the matrices                and              . 
be symmetric positive definite and symmetric positive semidefinite, 
respectively. Let  α be a positive constant and                                be a symmetric  
positive definite matrix. Then the spectral radius                 of the  
Gl-PMHSS iteration matrix 

                                            is bounded by                                                  

where   Sp(V-1W) denotes the spectrum of the matrix V-1W. Therefore, 

it holds that  

Proof. Applying the kronecker product, we can rewrite the Gl-PMHSS 
iteration as follows

which can be described equivalently as

where                       ,                        ,                      , It is easy to see the 
iteration scheme (14) is the PMHSS iteration method for solving the 
system of complex symmetric linear equations               , with                     . 
After simple computations, we have

We can easily verify that both       and      are Hermitian matrices. 
Moreover, when either                    ,                  or                     is positive 
definite, the matrix                                            or                     is also  
positive definite. We also have 
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Therefore, by making use of Theorem 2.1 in [4], we show that the 
PMHSS iteration method (14) converges unconditionally to the exact 
solution                of the complex symmetric linear systems            ,  
with the convergence factor being               . We also obtain that    
                                                              Analagously to the Theorem 2.1  
in [6], we can show that the Gl-PMHSS iteration method for the 
problem (1) also converges unconditionally to the exact solution                          
                   ,  with the convergence factor                         being bounded by 
          .

Next, using the Corollary 2.1 in [4], we can easily formulate the 
following Corollary.

Corollary 1. Suppose that the conditions of Theorem 1 be satisfied, 
      and          be the lower and the upper bounds of the eigenvalues 

of the symmetric positive definite matrix                             , respectively. 
Then

and

where                             is the spectral condition number of the 
matrix               .

Proof. The proof is similar to that of Corollary 2.1 in [4], hence it is 
omitted.

The inexact Gl-PMHSS iteration method

The Gl-PMHSS method is a two-step iteration scheme which 
requires the exact solution of two symmetric positive definite 
systems with matrices αV + W and  αV + T. This may be costly and 
impractical for solving the complex symmetric system arising from 
the discretization of a three-dimensional partial differential equation. 
Inspired by the advantages of inexact HSS iteration method [2,3], 
to enhance the computational efficiency of the Gl-PMHSS method, 
we can solve the two linear systems inexactly by empolying suitable 
iteration methods, such as the block SOR, Gl-GMRES and Gl-
CG methods. This results in the inexact Gl-PMHSS (IGl-PMHSS) 
iteration method for solving the problem (1).

To simplify numerical implementation and convergence analysis, 
we can state the IGl-PMHSS iteration method as follows.

Algorithm 2. The IGl-PMHSS iteration method

1. Choose an initial guess 

2. For  K = 0,1,2,--- until                                      converges;

3. Compute 

4. Approximate the solution of                                                      by iteration method 
such that the residual                                                                 satisfies                .  
                                      ,

5. Compute

6. Compute 

7. Approximate the solution of                                                    by iteration  
method such that the residual                                                                  
satisfies 

8. Compute 
9. End for.

Next, we will analyze the convergence properties about the above 
IGl-PMHSS method based on Theorems 3.1 and 3.2 in [6].

Theorem 2. Let the assumptions in Theorem 1 be satisfied. Suppose 
that the                              be an iterative sequence generated by the 
IGl-PMHSS method and                 be the exact solution of the pro- 
blem (1), then we have 

where the norm            is defined by                                      for any matrix 
 
                  ,       , and     are computed as

and

respectively. In particular, if

then the iteration sequence                    converges to the exact solution 

                       , where                                     and 

Proof. The proof is similar to that of Theorem 3.1 in [6], hence it is 
omitted.

We remark that it is not necessary for  {εk} and {nk} to approach 
to zero as k  is increasing. Using the Theorem 2, when the condition 
(17) is satisfied, we can guarantee the convergence of the IGl-PMHSS 
iteration method. According to the following Theorem 3, we can 
propose one possible way of choosing the inner iteration tolerances   
{εk} and {nk} such that the computational work is minimized and 
the original convergence rate of the Gl-PMHSS iteration can be 
asymptotically recovered.

Theorem 3. Assume that the the conditions in Theorem 2 be 
satisfied, let both           and            be nondecreasing and positive 
sequences satisfying                                                and                                         ,  
                                    and that both be real constants satisfying and ,where 
and are nonnegative constants. Then it follows that                          be 
constants satisfying                       and                                                , where 
      and      are nonnegative constants. Then it follows that
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where ρ and θ are computed in (15) and (16),             and δ  are defined  
by                                                       and                                  and              . 

In particular, it holds that                                                                , i.e.  

the convergence rate of the IGl-PMHSS iteration method is  
asymptotically the same as that of the Gl-PMHSS iteration method.

Proof. The proof is similar to that of Theorem 3.2 in [6], hence it is 
omitted. 

Numerical Examples

In this section, we perform some test problems from [4,5] to assess 
the effectiveness and feasibility of the Gl-PMHSS iteration method, 
when it is employed either as a solver or as a preconditioner for solving 
the complex symmetric linear systems with multiple right-hand sides. 
All computations are carried out using double precision floating point 
arithmetic in MATLAB (version R2010b) with a PC-Intel (R) Core 
(TM)2 Duo CPU T6570 2.10 GHz, and 2GB RAM. We choose the 
initial guess X0=Zeros(N, s) and set the right-hand side B=A*rand(N, 
s), s=5 where function rand creates an N × s random matrix with 
coefficients uniformly distributed in [0,1]. Note that Its and CPU 
denote iterations and CPU-time for computing approximation,  
respectively. Let the stopping criterion be                          . Gl-GMRES 
and Gl-GMRES(*) [11] denote the unrestarted global GMRES 
method and its restarted method, respectively. We only consider the 
right preconditioner, i.e. M1= I and M2 = M to enhance convergence 
behavior. We adopt the PMHSS preconditioner defined by

As suggested in [5], we choose the symamd.m ordering algorithm 
in actual implementations of the PMHSS preconditioner. Like the 
PMHSS iteration method in [5], we choose the optimal parameter α  
for the Gl-PMHSS iteration by performing numerical experiments; 
for more details, see [4,5]. We denote αexp as the optimal iteration 
parameters in this section. A symbol ``--" is used to indicate that 
the method does not obtain the required stopping criterion before 
maximum iterations or out of memory.

Example 1.  In this example, we choose the matrix which arises 
from Example 4.1 in [5], and the problem of (1) is of the form

For more details, we refer to [4] and the references therein. Tables 1 
and 2 report the numerical results.

From Table 1 we observe that the iteration counts of the Gl-GMRES 
and Gl-GMRES(20) methods increase rapidly with problem size, 
but that of Gl-PMHSS iteration method almost remains constant. 
Therefore, we can conclude the Gl-PMHSS iteration method is also 
almost independent of the problem size. Furthermore, as a solver, 
the Gl-PMHSS iteration method demonstrates the best convergence 
behavior than the Gl-GMRES and Gl-GMRES(20) methods in terms 
of iteration steps and CPU times. 
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From Table 2 we see that the PMHSS preconditioner drastically 
reduces iteration steps and CPU times of the Gl-GMRES and 
Gl-GMRES(10) methods. Moreover, the iteration steps of the 
PMHSS preconditioner is almost constant, and then the PMHSS-
preconditioned Gl-GMRES and Gl-GMRES(10) methods demonstrate 
h-independent convergence behavior. Setting the iteration parameter   
to be 1, we see that iteration counts for the PMHSS-preconditioned 
Gl-GMRES and Gl-GMRES(10) methods are almost identical to 
those obtained with the experimentally found optimal parameter αexp 
. In addition, the PMHSS-preconditioned Gl-BiCGSTAB shows the 
same convergence properties described as above, and it requires less 
Its and CPU than the PMHSS-preconditioned Gl-GMRES and Gl-
GMRES(10) methods.

Example 2.  In this example, we use the matrix which arises from 
Example 4.2 in [5], and the problem of (1) is of the form

For more details, we refer to [4] and the references therein. Tables 3 
and 4 report the numerical results.

As observed from Table 3, we also see that the iteration counts of 
the Gl-GMRES and Gl-GMRES(20) methods increase rapidly with 
problem size, but that of Gl-PMHSS iteration method almost remains 
constant. Therefore, we can conclude the Gl-PMHSS iteration method 
is also almost independent of the problem size. Furthermore, as a 
solver, the Gl-PMHSS iteration method gives the best convergence 
results than the Gl-GMRES and Gl-GMRES(20) methods in terms of 
iteration steps and CPU times.

From Table 4 we observe that the PMHSS preconditioner shows 
high quality and drastically reduces iteration steps and CPU times of 
the Gl-GMRES and Gl-GMRES(10) methods. Again, the PMHSS-
preconditioned Gl-GMRES and Gl-GMRES(10) methods still 
demonstrate h-independent convergence behavior. Moreover, setting 
the iteration parameter α to be 1 can lead to nearly optimal numerical 
results obtained with the experimentally found optimal parameter  
αexp. As before, the PMHSS-preconditioned Gl-BiCGSTAB shows the 
same convergence properties described above, and it can compete 
with or be superior to the PMHSS-preconditioned Gl-GMRES and 
Gl-GMRES(10) methods.

Example 3.  In this example, we use the matrix which arises from 
Example 4.3 in [5], and the problem of (1) is of the form

where                                                                                          ,  
                ,                                                              . For more details, we refer

( )kτ
{ }1 2( ) min ( ), ( )k k kτ τ τ=   { }1 2max ,δ δ δ=
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Gl-PMHSS  αexp 1.09 1.50 1.52 1.31 1.48

Its 22 22 23 23 23

CPU 0.029 0.113 0.751 4.951 26.572

Gl-GMRES Its 55 104 197 364 —

CPU 0.279 5.701 43.309 1120.1 —

Gl-GMRES(20) Its 75 259 713 2337 —

CPU 0.226 3.041 16.647 413.08 —

Table 1: Its and CPU for Gl-PMHSS, Gl-GMRES and Gl-GMRES(20) 
methods for Example 1.

2[( ) ( )]V HM K i C C X Bω ω− + + + =

( )W iT X B+ =

1 110( ) 9( )T T
c c m mW I V V I e e e e I= ⊗ + ⊗ + + ⊗ T I V V I= ⊗ + ⊗

T I V V I= ⊗ + ⊗ 1 1
T T m m

c m mV V e e e e ×= − − ∈
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Table 4: Its and CPU for preconditioned Gl-GMRES, Gl-GMRES(10) and Gl-BiCGSTAB methods for Example 2.

Method preconditioner  m × m 16 × 16  32 × 32 64×64 128×128 256×256

Gl-GMRES PMHSS  αexp 1.47 1.04 0.69 0.93 1.41

Its 6 6 6 7 7

CPU 0.011 0.036 0.199 1.466 7.295

PMHSS  α 1 1 1 1 1

Its 6 6 7 7 7

CPU 0.012 0.037 0.242 1.499 7.342

Gl-GMRES(10) PMHSS  αexp 0.67 0.76 0.74 0.56 1.28

Its 6 6 6 7 7

CPU 0.012 0.036 0.197 1.465 7.287

PMHSS α 1 1 1 1 1

Its 6 6 7 7 7

CPU 0.013 0.040 0.257 1.517 7.331

Gl-BICGSTAB PMHSS αexp 0.54 0.86 1.67 0.76 1.02

Its 3 4 4 4 4

CPU 0.005 0.026 0.159 0.941 5.051

PMHSS  α 1 1 1 1 1

Its 3 4 4 4 4

CPU 0.009 0.033 0.166 0.942 5.119

Table 2: Its and CPU for preconditioned Gl-GMRES, Gl-GMRES(10) and Gl-BiCGSTAB methods for Example 1.

Method  m × m 16 × 16  32 × 32 64×64 128×128 256×256

Gl-PMHSS αexp 1.09 1.50 1.52 1.31 1.48

0.68 0.89 0.86 0.88 0.84 23

Its 34 35 36 36 36

Gl-GMRES CPU 0.044 0.187 1.262 7.129 41.664

Its 44 82 158 306 —

Gl-GMRES(20) CPU 0.157 3.144 42.299 800.20 —

Its 56 160 525 1815 —

CPU 0.189 1.337 19.987 327.389 —

Table 3: Its and CPU for Gl-PMHSS, Gl-GMRES and Gl-GMRES(20) methods for Example 2

Method preconditioner  m × m 16 × 16  32 × 32 64×64 128×128 256×256

Gl-GMRES PMHSS  αexp 8.34 5.35 3.71 2.30 3.31

Its 8 8 8 7 7

CPU 0.014 0.050 0.294 1.476 7.049

PMHSS  α 1 1 1 1 1

Its 8 8 8 8 8

CPU 0.018 0.054 0.331 1.786 8.772

Gl-GMRES(10) PMHSS  αexp 3.60 4.94 2.20 1.79 2.91

Its 8 8 8 7 7

CPU 0.016 0.051 0.284 1.491 7.260

PMHSS α 1 1 1 1 1

Its 8 8 8 8 8

CPU 0.019 0.057 0.378 1.727 8.771

Gl-BICGSTAB PMHSS αexp 7.91 5.72 2.84 4.50 3.20

Its 5 5 5 5 4

CPU 0.010 0.033 0.196 1.067 5.070

PMHSS  α 1 1 1 1 1

Its 5 5 5 5 5

CPU 0.016 0.037 0.207 1.094 6.495
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to [4] and the references therein. Tables 5 and 6 report the numerical 
results.

As observed from Table 5, we see that the Gl-PMHSS iteration 
method returns the best convergence results than the Gl-GMRES and 
Gl-GMRES(20) methods in terms of iteration steps and CPU times. 
From Table 6, we can get similar observations to the ones made for
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the other two examples. As before, the PMHSS-preconditioned Gl-
BiCGSTAB shows the same convergence properties described above 
and performs better than the PMHSS-preconditioned Gl-GMRES 
and Gl-GMRES(10) methods in both iteration steps and CPU times.

Example 4. In this example, we consider the performances of the 
IGl-PMHSS iteration method on above three numerical examples, 

Method  m × m 16 × 16  32 × 32 64×64 128×128 256×256

Gl-PMHSS αexp 0.54 0.63 0.62 0.68 0.89

0.68 32 32 33 34 36

Its 0.046 0.217 1.639 11.177 60.287

Gl-GMRES CPU 32 50 77 113 —

Its 0.082 0.718 6.856 111.945 —

Gl-GMRES(20) CPU 34 60 98 155 254

Its 0.123 0.309 2.370 27.437 192.087

CPU 0.189 1.337 19.987 327.389 —

Table 5: Its and CPU for Gl-PMHSS, Gl-GMRES and Gl-GMRES(20) methods for Example 3.

Method preconditioner  m × m 16 × 16  32 × 32 64×64 128×128 256×256

Gl-GMRES PMHSS  αexp 6.35 7.06 4.10 2.62 2.80

Its 6 7 8 10 12

CPU 0.011 0.050 0.364 2.925 16.724

PMHSS  α 1 1 1 1 1

Its 6 7 9 10 12

CPU 0.013 0.054 0.428 2.936 17.012

Gl-GMRES(10) PMHSS  αexp 7.44 6.51 4.85 2.24 3.20

Its 6 7 8 10 12

CPU 0.011 0.051 0.363 2.876 16.502

PMHSS α 1 1 1 1 1

Its 6 7 9 10 13

CPU 0.014 0.056 0.443 2.916 17.570

Gl-BICGSTAB PMHSS αexp 6.37 7.08 4.63 2.43 1.86

Its 3 4 5 6 7

CPU 0.008 0.034 0.281 1.789 12.851

PMHSS  α 1 1 1 1 1

Its 4 4 5 7 7

CPU 0.012 0.041 0.335 2.178 13.301

Table 6: Its and CPU for preconditioned Gl-GMRES, Gl-GMRES(10) and Gl-BiCGSTAB methods for Example 3.

Example method m × m 16 × 16  32 × 32 64×64 128×128 256×256

No.1 IGl-PMHSS ITint (Gl-CG) 10.5 17.0 26.7 39.6 59.9

ITint (Gl-CG) 7.3 11.8 16.7 21.3 32.2

IGl-PMHSS ITint (PGl-CG) 3 3.3 2.6 3.2 4.3

ITint (PGl-CG) 2 2.1 2 2 3

No.2 IGl-PMHSS ITint (Gl-CG) 10.4 16.5 33.5 58.6 59.9

ITint (Gl-CG) 6.5 12.3 24.7 45.0 64.1

IGl-PMHSS ITint (PGl-CG) 3.5 4.4 4.9 7.0 12.0

ITint (PGl-CG) 2 2.6 3.4 4.9 8.6

No.3 IGl-PMHSS ITint (Gl-CG) 17.2 33.4 57.8 90.3 120

ITint (Gl-CG) 15.2 28.0 48.5 90.6 119.2

IGl-PMHSS ITint (PGl-CG) 4.5 5.4 7.6 16.1 35.3

ITint (PGl-CG) 4 5.3 6.2 10.1 14.3

Table 7: Its and CPU for preconditioned Gl-GMRES, Gl-GMRES(10) and Gl-BiCGSTAB methods for Example 3.
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and the numerical results are given in Table 7. In Table 7, we provide 
the average number of inner Gl-CG or inner preconditioned Gl-CG 
(PGl-CG) for each of the two symmetric and positive systems of linear 
equations with αV + W and αV + T. Let the stopping criterion for the 
inner iterations satisfy εk =  0.1 and  ηk = 0.1.

Based on the datas in Table 7, we can conclude several observations. 
First, for the IGl-PMHSS employed inner Gl-CG iterations, the average 
number of inner iterations per outer iteration grows rapidly with 
problem size. Second, using inner PGl-CG iteration with incomplete 
Cholesky factorization with drop tolerance 0.001 (Cholinc(A, 1.e-
3)) [17] preconditioner, the average number of inner iterations per 
outer iteration is small in most cases and the growth can be alleviated. 
However, for the case m = 256  in Example 3, the average number of 
inner iterations per outer iteration is still large. This problem can be 
overcome by using a suitable preconditioner or other preconditioned 
Krylov subspace methods.

Conclusion
 

We have established and analyzed the Gl-PMHSS iteration method 
and the corresponding inexact variants for solving a class of complex 
symmetric linear systems with multiple right-hand sides. Similar to 
convergence properties of the PMHSS iteration method and PMHSS 
preconditioner, numerical results have shown the feasibility and 
effectiveness of the Gl-PMHSS method, and taking the parameter   
α to be 1 can still yield nearly optimal numerical results. To reduce 
the computational cost, the IGl-PMHSS iteration method is also 
implemented and analyzed in detail. Choosing a tighter tolerance in 
the inner stopping criterion and some suitable flexible Krylov subspace 
methods to deal with practical problems are under investigation and 
will be given in the future.
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