
Abstract

Feedback control is a powerful methodology for handling model and parameter uncertainty in 
real-world applications. Given a useful nominal plant model for developing the control approach, it 
is well-known that optimal solutions only perform well for a limited range of model and parameter 
uncertainty. A higher-order optimal nonlinear feedback control strategy is presented where the feedback 
control is augmented with feedback gain sensitivity partial derivatives for handling model uncertainties. 
A computational differentiation (CD) toolbox is used for automatically generating high-order partial 
derivatives for the feedback gain differential equations. An estimator is assumed to be available for 
predicting the model parameter changes. The optimal gain is computed as a Taylor series expansion, 
where the feedback gains are expanded as a function of the system model parameters. Derivative 
enhanced optimal feedback control is shown to be robust to large changes in the model parameters. 
Numerical examples are presented that demonstrate the effectiveness of the proposed methodology.
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Introduction

Feedback control is a powerful methodology for handling model 
and parameter uncertainty in real-world applications. The calculations 
required for developing optimal solutions, however, demand significant 
analyst time and computational resources. Given a useful nominal 
plant model for developing the control approach, it is well-known that 
optimal solutions only perform well for a limited range of model and 
parameter uncertainty before the system response degrades and the 
resulting control objectives are not met. The classical approach is to 
re-compute the optimal gains each time large changes arise in either 
the model or parameter values, or develop a gain-scheduling strategy. 
This paper addresses this limitation by augmenting the development 
of feedback control solution with sensitivity calculations that allow the 
feedback control to be generalized by replacing the classical feedback 
gain with a truncated Taylor series that accounts for the model and 
parameter changes.

 
In science and engineering, the system equations of motion are 

described by the following first order vector differential equation:

Where x Є RN denotes the state vector, t denotes the state vector,  
t denotes time, x0 denotes the initial condition, and                  . The  para- 
meter variations are assumed to be time-varying (i.e. P= P (t). For a 
given initial condition and well-defined parameters, each trajectory is 
unique. As a result, in the real-world, one must address the problem 
that model parameters may only be approximately known. Classically, 
this problem is handled by re-computing the solution each time 
large changes arise in either the model or parameter values. We seek 
more globally robust methods. After formulating our Taylor series 
-based feedback control strategy, several examples are presented that 
demonstrate the significantly expanded domain convergence obtained 
for the proposed methodology. Only a single control calculation is 
required. Potential sources of model uncertainty include, but are not 
limited to: expendable fuels, articulated moving parts (i.e., pointing 
subsystems, rotating machinery, scanning systems, etc.), time-varying 
stiffness and damping behaviors, changing moments of inertia, 
robotic manipulations of external objects, environmental effects, etc. 
To this end, a key step in the control design process is concerned with
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establishing the expected range in the model and parameter 
uncertainties. To handle the expected range of model and parameter 
variation, a sensitivity based control design is developed where 
high-order partial derivatives are computed for the feedback control 
gains. By combining the classical gains and the sensitivity partial 
derivatives a new high-order optimal nonlinear feedback control 
strategy is presented where the feedback control is augmented with 
feedback gain sensitivity partial derivatives. A generalized gain 
matrix and disturbance rejection control formulation is presented. 
Derivative enhanced optimal feedback control laws are shown to be 
robust to large changes in the model parameters. The computational 
differentiation (CD) toolbox automatically generates the higher-
order partial derivatives for the feedback gain differential equations. 
An estimator is assumed to be available for predicting the model 
parameter changes. The optimal gain is computed as a Taylor series 
expansion in the gains, where the feedback gains are expanded as 
a function of the system model parameters. The pre-calculation 
of the sensitivity gains eliminates the need for gain scheduling for 
handling model parameter changes. Higher-Order feedback gain 
sensitivity calculations are applied on the full nonlinear model using 
computational differentiation tools.

Literature Review

Several Authors have attempted generalizations of feedback control 
where the co-state variable is expanded as power series in the state 
variable. Recently, Majji et al. [1,2] have explored the developments of 
this theory to high-order. Malanowski and Maurer [3,4] introduced a 
first-order sensitivity method to investigative the parametric variation 
of solutions to constrained optimal control. Later work considers 
theoretical issues such as regularity. Pinho and Rosenblueth [5] utilize
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the implicit function theorem to transform a constrained optimal 
control problem into an unconstrained form and propose a solution 
approach. Recent work by McCrate [6] utilized higher-order 
differentiations of the Hamilton-Jacobi-Bellman (HJB) equation to 
solve nonlinear optimal control problems and their sensitivities. The 
success of these earlier approaches motivates our investigation into 
developing high order sensitivity models. Carrington and Junkins [7, 
8] expanded the co-state variable as a power series in the state variable. 
This work builds on the foundational earlier works of Bani Younes 
et al. [9-11] by formulating a nonlinear tracking problem, where the 
co-state variable is expanded as a power series in the tracking error 
relative to a reference trajectory. A further generalization has been 
considered where the control strategy has been further enhanced 
by augmenting the control gains with sensitivity partial derivatives 
for the system parameters and model errors [12-14]. This approach, 
however, proved to be very cumbersome to implement because the 
gain sensitivity calculations require very complicated array algebra 
[15-17] calculations for high-order gains.

The key contribution of the paper is the demonstration that the 
limitations of these earlier efforts are shown to be easily overcome by 
replacing the gain calculations with a straightforward Taylor series, 
where computational differentiation tools handle all of the complicated 
sensitivity calculations in a hidden way, where no array algebra 
calculations are required. Numerical experiments are conducted to 
establish the required number of control partial derivatives. In real 
world applications, CD generates all numerical partial derivatives 
required for the feedback control design process. This approach trades 
computer memory for storing the pre-computed gain gradients for 
on-the-fly re-computation of the control gains. It is anticipated that by 
pre-computing sensitivity gains that many real-time applications can 
be handled that are experiencing large time-varying plant changes. 
All parameters being used in the feedback control formulation are 
included in the state estimation routines. In a very general setting, it is 
anticipated that even articulated sub-system motions are handled by 
accounting for rotational motion and the associated mass, stiffness, 
and damping property impacts. The utility of these ideas are topics of 
continuing future research, where trade-offs are performed between 
gain-scheduling approaches versus the sensitivity-based approach 
considered here.

Computational Differentiation

Computational differentiation is a specialized topic in applied 
mathematics and computer science for developing and fielding 
software tools for numerically evaluating partial derivative models 
[18,19] Computational differentiation has existed since the 1960s 
starting with the seminal works of Wengert [20] and Wilkins [21] and 
developed by many others [18-23]. Early approaches used an existing 
coded math model as a template for applying the rules of calculus to 
write a new code that implements the partial derivatives for the math 
model. This approach has proven to be very effective for generating 
first-order sensitivity models. Alternatively, this paper presents 
higher-order derivative models that are generated by using operator 
overloading methods, where the transformations are implicitly 
handled by the programming language, when the compiler detects a 
derivative enhanced data type. Turner’s Object-Oriented Coordinate 
Embedding Algorithm (OCEA) [1, 9, 12-14, 24- 26] CD software tool 
builds all of the partial derivative models. OCEA acts as a Language 
extension for FORTAN 95/2003 when it is linked to application codes. 
This paper makes use of Turner’s (OCEA) program for computing 

1st-4th-order mixed partial derivative models [1, 12, 27, 28]. OCEA 
is a CD tool for computing arbitrarily complex partial derivative 
models. At compile time, OCEA uses the programmer’s math model 
as a template for deriving, coding, and generating an executable for 
simultaneously compiling the simulation and sensitivity models. 
No symbolic or finite difference tools are used for any of the 
gradient tensor calculations; all results are immediately processed 
to produce numerical results for all partial derivative orders. Each 
time a program is compiled OCEA derives, assemblies, and codes 
the partial derivative model in the program executable, yielding 
numerical results that are accurate to the working level of precision 
for the machine. This approach benefits the user in four ways: (1) 
only the basic math model is programmed and checked out; (2) no 
analyst effort is required to either derive or code sensitivity models; 
(3) the user recaptures the development time normally required for 
developing sensitivity math models, coding, and validating nonlinear 
and high-order models; and (4) most importantly, math model 
changes are automatically handled each time the code is complied. 
A CD-based approach is very attractive because hand derived 
models are very vulnerable to model changes that can potentially 
force a new derivation and coding or the sensitivity model. OCEA 
transforms all math and intrinsic functions to embed multiple levels 
of the chain rule of calculus for building partial derivative models. 
OCEA consists of a suite of programs/modules that process the user 
supplied software math models as a template for generating high-
order sensitivity models. Minimal modifications of the user existing 
software models are required for enabling derivative-enhanced 
calculations. Users identify independent variables for the derivative 
calculations and define the variables for which partial derivatives 
are required (e.g., typically one is required to convert real variable(s) 
to an OCEA variable TYPE(EB), which instructs the complier that 
partial derivatives are computed for the TYPE(EB) variable(s). The 
software accepts user math models coded in standard FORTRAN 
95/2003 language constructs. At compile time the compiler itself 
assembles the partial derivative solution by identifying variable data 
types, intrinsic/lib functions, and inserting Function/Subroutine calls 
in the compiler generated executable for computing the associated 
partial derivatives. From the user perspective, OCEA behaves as a 
language extension for FORTRAN 95/2003: its hidden operations 
exploit operator overloading and user-defined data types for handling 
all memory management details and derivative enhanced operations. 
It should not be surprising that OCEA introduces a computational 
overhead when compared to highly optimized hand coded partial 
derivative models. The tradeoff is this: if the basic math model 
requires X man-months to develop, then the derivation, coding, and 
validation of the sensitivity model can add 5X-10X man-months to 
the project development effort. Since the computer time required for 
deriving and compiling the sensitivity solution is measured in seconds 
vs. 5X-10X man-months for an analyst, OCEA’s impact is both clear 
and unambiguous for developing and solving real-world projects 
subject to man-power resource constraints. OCEA is particularly 
valuable in the normally fluid engineering design environment, where 
frequent design changes and -what if- experiments must be carried 
out to fully explore the opportunities available in the notional system 
design space. The analyst always has the most up to date model. This 
is in stark contrast the case of a hand-derived model where even 
seemingly simple model changes can devastate all previous derivation 
efforts; thereby, forcing a restart for the derivation and coding effort 
from scratch for each new sensitivity model is a daunting unwelcome 
task. OCEA’s derivative enhanced variables are defined as abstract 
compound data objects, where objects such as the variable F, defined 
below, consist of the following list of concatenated data in computer 
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memory:                                                   where            denotes the m-th 
order tensor gradient operation. The only variable visible to the analyst 
is F. Numerical values for the sub-object component values of the 
tensor gradient operators are obtained by using structure constructor 
designators                                                                                        . A detailed 
description of all of OCEA’s capabilities is found in the software user 
manual [29].

Mathematical Model and Applications

Optimal control methodologies are presented for supporting a 
robust sensitivity-enhanced feedback control approach. The optimal 
trajectory is obtained by minimizing the following quadratic 
performance index [16].

Subject to

where Q and R are weight matrices, A is the plant matrix, B is the 
control matrix, x Є RN is the state vector and is the control input. 
Invoking the standard necessary condition for optimality [7, 8, 16] 
after some algebraic manipulation, the stabilizing control is given by

 

where the feedback gain matrix S(t) is obtained by numerically 
integrating the Riccati matrix differential equation:

By assuming the S, A, B, R, Q are derivative enhanced, one simply 
computes Eq. (5), where OCEA builds

This equation is numerically integrated to provide the desired gain 
solutions. The sensitivity enhanced optimal control is implemented as 
feedback control

Where бp denotes an n-th order tensor-based product for the 
parameters variations.

Results and Discussion

Consider the optimal control problem of minimizing the following 
performance index:

subject to the linear model

Let us assume that the model parameter α  is poorly approximated 
with huge uncertainty бα~±5%.

For nominal solution, the parameter is chosen to be equal α*=1. 
The feedback control is designed for handling model and parameter 
uncertainty. It is well-known that the stabilizing control for this 
problem is given by u(t) =-s(α,t)x(t) , where the time varying state 
feedback gain s(α,t) is calculated by solving the Riccati differential 
equation backwards in time.
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Figure 1: Enhanced Feedback Solutions for uncertain linear plant.

http://dx.doi.org/10.15344/ijaem/2016/112


Citation: Younes AB, TurnerJD (2016) Derivative Enhanced Optimal Feedback Control Using Computational Differentiation. Int J Appl Exp Math 1: 112. doi: 
http://dx.doi.org/10.15344/ijaem/2016/112

Int J Appl Exp Math                                                                                                                                                                                                IJAEM, an open access journal                                                                                                                                          
                                                                                                                                                                                                                                    Volume 1. 2016. 112  

       Page 4 of 6

Figure 2: Enhanced Feedback Solutions for uncertain nonlinear.

(a)

(b) (c)

(d) (e)
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Even for this simple problem, it is noteworthy that even a small 
change in the plant parameter (say α = α + бα) Forces a recalculation 
of the state feedback gains for maintaining the desired controlled 
system response. Mathematically, parameter sensitivity is handled 
by developing Taylor series expansions for the control gains about 
prescribed nominal values, leading to

The time histories for the state and gain sensitivities are shown 
in Figure 1 (a and b respectively). Figure 1(a) presents the nominal 
solution of the system, where α* = 1. The gain partial derivatives are 
generated automatically by OCEA during the backward integration 
of the Riccati gains. It is obvious that the gain sensitivities approach 
steady state at initial time. Figure 1 (c and d) shows parameter 
variations where the derivative enhanced control easily handles 
this challenging range in model uncertainty. Particularly, Figure 1c 
which demonstrates that the terminal error for the fixed time control 
problem is virtually not impacted by the large parameter variations 
even though the classical control approach experiences quadratic 
growth in the observed error. Figure 1d demonstrates similar behavior 
for the classical (nominal) and the enhanced solutions in terms of 
the variations in the performance index. This suggests that the new 
control gain approach is much more robust to modeling errors that 
classical control designs.

In the next example, we augment the state equation, given by Eq.(9), 
to become nonlinear

The system nonlinearity is handled by assuming that the co-state is 
expressed as following Taylor series

where the control gains {S1,S2,S3,...,Sj} must be recovered. The 
new co-state terms are for handling the plant model nonlinearities. 
For this particular example, fourth order co-state model is used. 
Similarly, parameter sensitivity is handled by developing Taylor series 
expansions for the control gains {S1,S2,S3,S4} about prescribed nominal 
values, leading to

In the proposed scheme, the feedback gain solution is stored for the 
nominal gain, as well as the first-through-fourth partial derivatives. 
Those partials are generated automatically by OCEA, see Figure 2b. 
This allows a large family of nearest neighbor perturbations in the 
parameter to be handled by a single preliminary calculation. Figure 
2a exhibits the sensitivity in the approximate/calculated solution as 
a time history. It is obvious that the perturbations in da are well-
handled at the boundary conditions. Figure 2 (c and d) show that 
the approximate/calculated final state solution and cost are valid for 
larger da values when compared to the nominal solution.

Conclusions 

It is well known that the closed loop system dynamics is highly 
sensitive to plant parameters. Generalizations of classical control 
results are presented in this paper that mitigates the sensitivity of plant 
models to both parameter and state nonlinearities. Computational 
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differentiation is introduced as a methodology for automatically 
generating the required partial derivatives for implementing Taylor 
series-based generalization of classical feedback control results. 
Several examples are presented that demonstrate the effectiveness 
and robustness of the Taylor series-based approach for the feedback 
gains for nonlinear applications. The derivative enhanced feedback 
gain solutions are shown to handle large parameter variations with 
little impact on the resulting terminal errors for the problem. These 
promising results suggest that the proposed new control strategies 
can have a significant impact on addressing complex real world 
applications where parameter uncertainty and model nonlinear 
effects are present.
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