
Abstract

Following Negishi (1960), we characterize the competitive equilibrium as the saddle point of a 
(constrained) Lagrangian and prove its existence for the case of finite dimensional spaces. We also 
outline how to extend this method to infinite dimensional spaces as a variational problem employing 
Dirac's delta function.
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Introduction

The mathematical theory of economic markets was established 
in the mid-1950s [1,20,22]. This describes an equilibrium state 
("market equilibrium'' or "competitive equilibrium"; see Definition 1) 
resulting from trades for finitely many commodities between finitely 
many traders (consumers) where consumers each achieve their best 
satisfaction within their own economic condition (budget constraint). 
Hence, no one would deviate from the current position, but only as 
long as economic or environmental changes do not occur. It is well 
known that the fixed-point theorems employed for certain continuous 
maps may be suitably constructed to prove the existence of such 
equilibrium.

An interesting feature of the competitive equilibrium is that it 
attains the best outcomes, not just for individuals, but also for the 
entire society (economy) in the sense that no one can be made better 
off from the equilibrium position unless someone is at least made 
worse off. In other words, the equilibrium position is socially optimal; 
see Definition 2 for the precise meaning. This is the theoretical 
interpretation for the celebrated quote:

The socially optimal or efficient states will be realized by the fair 
competitions via the "price mechanism''.

Mathematically speaking, the socially optimal states are naturally 
obtained as solutions of a social optimization problem that maximizes 
the weighted sum of individual utilities (social welfare function) 
under the resource constraint. It is well known that the competitive 
equilibrium is socially optimal (Proposition 1). It can be also proved 
that each weight profile corresponds to a distinctive optimal state 
[3]. Therefore, if we know a welfare weight corresponding to the 
equilibrium, we can also formulate the competitive equilibrium as a 
solution of the constrained social optimization problem. This point of 
view was opened up by Negishi [21].

The purpose of this paper is to facilitate Negishi's method with 
the assistance of recent developments in general equilibrium [3] 
and optimal control theory [16], see also [11,12], and demonstrate a 
possible way for extending Negishi's finite dimensional result to infinite 
dimensional settings. As we explain in  the final section, these infinite 
dimensional spaces naturally arise in many economic applications. 
We also trust that this analysis introduces mathematicians working
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in optimal control theory and related areas to general equilibrium 
theory as an attractive field to which their mathematics is applicable.

The paper is organized as follows. The next section, we present a 
general equilibrium market model as generally as possible. All of the 
contents in this section are quite standard; hence, readers familiar 
with general equilibrium theory can omit this section. In the third 
section, we formulate our basic problem as a constrained optimization 
problem as stated above, and prove the existence of the equilibrium 
(Theorem 1). For some technical reasons, we work within the smooth 
setting. Certainly this is much stronger than the ordinary continuous 
setting, but this also makes the analysis simpler and helps to set up 
the basic framework for considering the competitive equilibrium as 
an optimal solution.

In the fourth section, we outline the basic idea for extending the 
finite dimensional model in the next section to infinite dimensional 
settings. In the infinite dimensional spaces, the social optimization 
problem will be that of the calculus of variations. To undertake the 
necessary computations at an elementary level, we utilize the delta 
function in Dirac [9]. To our knowledge, this is the first time this 
appears in mathematical economics. The final section concludes.

Abstract Market Model

A market model consists of two categories of theoretical objects: 
commodities and agents (consumers). The list of commodities 
available in the market is called the commodity bundle or commodity 
vector, which is a vector of a Banach space, or more generally, a 
topological vector space X, which we call a commodity space.

Example 1: A commodity space is an ℓ-dimensional Euclidean space 
Rℓ. Hence a commodity vector is an ordinary ℓ-dimensional vector x 
= (xi), i = 1.... ℓ. A commodity xi is distinguished from a commodity
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xj (i≠j) by its commodity characteristics, for example, its physical 
specification and the time and location at which it is traded etc.,..

Example 2: A commodity space is lP space of p-summable sequences  
for 1 ≤ p < +∞ [19,24] or the space of all bounded sequences for p = +∞ 
[5]. A commodity vector is a sequence x = (xt) and can be interpreted 
as a stream of commodities along time period t (=1,2...). That xt  is an 
amount of a commodity available or traded at period t. If we consider 
the commodity space Lp(t0,t1) of p-integrable functions on [t0, t1], the 
trades will be done "instantaneously'' at each moment t Є [t0, t1].

Example 3: A commodity space is the space of continuous functions 
C(K) on a compact metric space K [19,24]. In this case, a commodity 
vector is a continuous function x(t), t Є K. The set K is a set of the 
commodity characteristics and the commodities x(t) are distinguished 
from each other "continuously''. In other words, we can state the two 
commodities x(t) and x(s) are "near'' as their characteristics t and s are 
near in the metric on K. In terms of economics, the commodities in the 
space C(K) are "differentiated''. We provide some additional remarks 
on the concept of the differentiated commodities formulated on the 
space of measures M(K) discussed in [17,13] in the final section.

A consumer is described by its preferences and the commodity 
bundle initially held (an initial endowment), as explained later. All the 
examples above are endowed with their order relations, for instance, 
x = (xt) ≥ 0 = (0,0,...) if and only if xt ≥ 0 for all t, ϕ ≥ 0, (constant 0 
function) for ϕ(t) Є C(K) if and only if  ϕ(t) ≥ 0 for all t Є K, and so 
on. Hence, in this paper, the Banach space X is equipped with an order 
relation denoted as usual by ≥ (≤ will be also used). If x ≥ 0 and x ≠ 
0, we write x > 0. In examples 1 to 3 above, for x = (xt), (x = ϕ(t)), we 
write x >> 0  if xt > 0, for all t (ϕ(t) > 0 for all t Є K).

Let Ω = X+ = {x Є X | x ≥ 0} be the nonnegative orthant of X.  
As each commodity is consumed in a positive (nonnegative) amount, 
all consumption vectors are potentially contained in the set Ω. 
Therefore, we refer to this as the consumption set.

Consumers will have some "degree of satisfaction'' or "utility'' when 
they consume a bundle x. This can be represented by a real valued 
function called utility function u(x) defined on the consumption set 
Ω. For x, y, Є Ω , u(x) ≤ u(y) means that the bundle y is preferred or 
indifferent to the bundle x by the consumer. u(x) < u(y) means that 
the bundle y is strictly preferred to the bundle x. We assume the utility 
function to be continuous on Ω.

The consumer is also assumed to have a bundle called an initial 
endowment vector ω Є Ω, which is owned initially as the consumer's 
"wealth''. This provides the source of money (income) for a consumer 
to purchase a consumption vector in the market. Finally, we assume 
that there are finitely many (say m) consumers in the market indexed 
by a = 1...m. The consumer a is characterized by the utility function 
ua(xa) for the consumption bundle xa and initial endowment ωa. A 
2m-tuple (ua, ωa)a=1 is called an economey.

A price vector p is a nonnegative and continuous linear functional 
on the commodity space X that is not equal to the zero functional 0. It 
seems economically natural and mathematically convenient that the 
price functional is an element of the norm dual  of the commodity 
space. Indeed, in all cases in the literature, the price functionals 
are continuous (or bounded). The value of a commodity bundle x 
evaluated by a price functional p is denoted by px. An m-tuple of the 
consumption vectors (xa) is called an allocation. An allocation is said 

to be feasible if                                    . It is called exactly feasible if.  

                                       . Then we can define the competitive equilibri-

um of this market in the standard manner.

Definiation 1: An m+1-tuple of consumption bundles and a price 
vector ((xa),p), a =1...m is called the competitive equilibrium if and 
only if the following conditions are satisfied.

(E-1) pxa ≤ pωa and ua (xa) ≥ ua(x) whenever px ≤ pωa , a = 1...m,
 
(E-2)                                        .

The economic meaning of the conditions is clear enough. Condition 
(E-1) states that consumers maximize their utilities within the budget 
constraint. Condition (E-2) requires the equilibrium allocation (xa) 
to be feasible.

 
Definiation 2: A feasible allocation (xa) is called  Pareto optimal if and 
only if there exists no other feasible allocation (ya) such that ua(ya)  ≥ 
ua(xa) for all a, and ua(ya) > ua(xa) holds for at least for one a.

A feasible allocation is Pareto optimal if it is impossible that 
everyone can be better off from that allocation with someone strictly 
better off. The following proposition is easy to understand and almost 
immediate from Definitions1 and 2.

Proposition 1: Let ((xa), p) be a competitive equilibrium of an economy. 
(ua, ωa)a=1 . Then the allocation (xa) is Pareto optimal.

proof: Suppose that (x1... xm) is not Pareto optimal. Then there exists 
a feasible allocation (ya) such that ua(ya) ≥ ua(xa) for all a  and ua(ya) 
> ua(xa) holds for at least one a. Then it follows that pya ≥ pωa for all a 
Є A. For a such that pωa = 0, the inequality follows trivially. Suppose 
that pωa > 0 and pya < pωa for some a. Then by the continuity of ua 
and p, there exists a bundle z Є Ω which is close enough to ya such 
that ua(ya) > ua(z) and pz < pωa. Therefore, ua(xa) < ua(z) and pz < 
pωa, contradicting the condition (E-1) of Definition 1. Furthermore, 
for a such that ua(xa) < ua(ya), we have  pya > pωa. Summing  
these inequalities over a, we obtain                                                  .Conver-
sely, as the allocatio (y1... ym) is feasible, we have                                    .  
Given p > 0, we have                                        , which is a contradiction. 

Let             . The parameter Ω is the amount of the total 
resource, hence it indicates the 'scale' of the economy. Let P(ω) be the 
set of Pareto optimal allocations of the economy with total resource 
w and we refer to this as the Pareto set of the economy (ua, ωa)a=1. 
Throughout the paper, we assume that ω>> 0.

Finite Dimensional Case: A Fixed Point Problem

In this section, we assume that the commodity space X is Rl and the 
utility function satisfies the following conditions for every a = 1...m:

(U-1) ua is twice-continuously differentiable, namely, that of class 
C2 on int Ω= {x Є Ω| x >> 0},

(U-2) for every sequence xn = (xn) Є int Ω such that xn → 0 for some 
i, it follows that ua(xn) → -∞.

We can avoid the "boundary solutions'' using the assumption (U-2)
1The study of a market model with a continuum of consumers was initiated by Aumann 

[2], for later development , see Hildenbrand [10] and Suzuki [23].
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Let Dua(x) = (∂1ua(x) ... ∂lua(x)) be the derivatives (tangent map) of 
ua at x Є int Ω where

and let

be the second derivative. For every x Є int Ω, the Hessian is D2ua(x) 
considered to be a linear map from Rl to itself. We also assume for 
every a = 1...m,

(U-3) ua is strictly differentiably monotone, i.e., Dua(x) >> 0 for 
every x Є int Ω,

(U-4) ua is strictly differentiably concave, i.e., D2ua(x) is a 
nondegenerate, negative definite bilinear form on Rl.

Let                                                                       be the unit simplex and for 
each                                                         and                   consider the following 
constrained social optimization problem P(λ, ω).

                                                                        subject to

                                                                        

For obvious reasons, we call the parameter λ the welfare weight. As 
the set of feasible allocations                                                                is compact 
and convex, the prblem P(λ, ω) has a solution when the utility 
function ua(.) is continuous and concave. Balasko [3, Proposition 5.1, 
p.491] showed that under the assumptions (U-1) to (U-4), the Pareto 
set P(ω) is diffeomorphic to int∆. Let xa(λ, ω) be the solution. By the  
monotonicity (U-3), the constraint is binding, or                                   . 
Balasko also showed xa(λ, ω) that is smooth at each 
int Ω2.

Proposition 1: states that the equilibrium allocation belongs to the 
Pareto set P(ω). Therefore, the whole question is to identify the welfare 
weight corresponding to the equilibrium allocation. We address this 
problem in this section.

By Corollary 1 in [16, p.219], the solution of the problem P(λ, ω) is 
a saddle point of the Lagrangian

where                             is the Lagrangian multiplier

Let                                                                                            be the  peramal 
function ([16, p.216]). Here we have                                                               .
A remarkable fact is the following, when π (λ, ω) is differentiable in ω, 
the multiplier is determined by ∂ω π (λ, ω)[16, p.222]. Then one  has  
the Lagrangian multiplier p                                                                                          .

2In fact, Balasko showed the differentiability for λ but not for ω. However, the latter is 
obvious from his proof.

Let (xa(λ,ω), p (λ,ω)) be the saddle point that satisfies

for every             and every               . For each                 , define              
by

                                                                                            , a = 1...m.

Note that                                                                                     since ot- 
herwise it would follow that                                                              for all 
a = 1...m. Then would have                   
a contradiction. Hence                           is well defined.

Let  Φ : int∆→∆ be defined by                     . As xa(λ,ω) and p(λ,ω)
are continious on int∆ and ∆ is compact, we can extended Φ 
continiously to ∆. Then by Brower's fixed-point theorem, there exists 
a fixed point
                                            

Let                                and                         . In the following, we will 
show that the fixed point  corresponds to a competitive equilibrium

              .

We first note that the equilibrium price is strictly positive, or 
             If not,               for some j. Define a new allocation 
                      by                   for i ≠ j and                         for some Є > 0. 

Then                                                             , contradicting the first ine-
quality of  (2).

Then we have               for a' such that                If not, it follows from 
(3) that                                 , hence               Since                         for some
b. Define a new collection                                                            and 
     for a ≠ a, b. Then                      and
contradicting the first inequality of the saddle point property (2). 
Similarly, we show that for a with ωa = 0, it follow that               and 
=0. Then we have form (3) that                                                                       hence, the  bud- 
get constraints for all consumers are met, namely that                         , a=  
1...m.

When ωa = 0, the set of consumption bundles satisfying the budget 
constraint is a singleton {0}, given             Therefore, the bundle 0 ma-
ximizes the utility trivially, and hence satisfies the condition (E-1). 
Now suppose that ωa > 0 and take any vector x with                      Setting
            for b ≠ a, it follows from the first inequality of (2) that  
                                                                           hence the equilibirium con- 
dition (E-2) is also met (with exact equality). We have thus prooved:

Theorem 1. There exists a competitive equilibrium. 

We now provide a simple example for which we can easily compute 
the equilibrium.

Example 4: A commodity vector is denoted by x = (xi),  i =  1...ℓ. The                                                           
consumer a (=1...m). Note that this utility function3                                         
logxa where the constants βa's satisfy βa > 0, for all  i =  1...ℓ  and   
                      , all a =1...m). Note that thia utility function satisfies the 
conditions U-1 and U-4. Each consumer is assumed to be consumed  
to own the same amount of commodities as his/her initial endowm- 
ent ωa = (ea...ea) with ea> 0. Let                                                     be the 
total endowment (resource) of the economy.
3In the economic literature, this is the Cobb--Douglas utility function.

ˆ( ) 0.p 
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The Lagrangian for this example is written by

Setting                           in the first-order conditions (FOCs) for 
evaluated at                 we obtained

Summing (5) over i and using the budget condition  

                   and                          we have                                                  Su-

mming this over a with the help of                  the welfare weights 
are determined by

and we obtained from (5) and (6) that

 

                                                                                                              
                       

Infinite Dimensional Case: A Variational Problem

In this section, we consider the market model in which the comm-
odities are indexed by time period t Є T (intertemporal resource 
allocation model). In what follows, we assume that T is a compact 
interval T = [t0,t1] with Lebesgue measure τ. The (nonnegative) 
amount of the commodity t is denoted by x(t), y(t) and so on. Hence, 
the commodity bundle is a function defined on T. We assume that 
the commodity space to be the space of essentially bounded functions
                                                                        where 

                                                   . A pleasant property of L∞ is that the in- 
terior of   Ω = L+ with respect to the norm topology is nonempty. It is  well 
known that the norm dual of L∞ is the set of bounded additive set 
functions (finitely additive measures) on (T, В(T)) which is denoted 
by ba(T), where В(T) is the borel σ-algebra of T . The value of a liner 
functional                                                   is denoted by 

As before, there exist m consumers indexed by a(=1,...m). Consumer 
a has the separable utility function4, 

Where                     for all t Є T and ∫Tβa(s)ds = 1, a = 1 . . . m, and ua(x)
is a real valued function on       that satisfies the conditions (U-1) to  
(U-4) in the previous section. We assume that the consumer a is 
endowed with ωa(t)(> 0) amount of the commodity t as his/her initial 
endowment.  Set                                     .

In the following example, we illustrate our basic computational tool 
(Dirac's delta function) as used throughout this section.

Example 5: There exists one consumer m=1 with utility function          
                                                       such that β(t) ≥ 0 for all t Є T and 
                   . His/her initial endowment                   is assu- 
med to be constant, hence            is also the total endowment  
(resource) of the economy at each t.

4More precisely, the utility function is not a function but a (nonlinear) functional that is a 
map assigning a real value to the function (not a number) x(t).
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To elucidate the functional calculus in an elementary way, Dirac's 
cerebrated delta function will be helpful. It is a "function'' б(t) on       
      that is defined by

and assumed to satisfy                        . From this and the definition,  
we obtain that ∫T g(s)б(t-s)ds = g(t) for any function5 g(t)([9, p.59]).

Let f(x) differentiable function. we define

                                                                                                                  .  

This is a fundamental mathematical formula, which we use 
throughout the note. Then we can differentiate ∫T f(x(s))ds with respect 
to x(t):

The consumer maximizes the utility function(al)

subject to the budget constraint                                                                                    . 
where we have assumed that the equilibrium price vector p(t) can  
be taken form L1(T), and nomalized               (this assumption  
will removed in what follows). Mathematically speaking, this is to 
solve a constrained variational problem. To this end, we differentiate 
the constrained Lagrangian with the multiplier μ.

in x(t) and obtained the FOC

It follows from the FOC that ∫T β(s)ds - μ∫T p(s)x(s)ds=0, hence                                                                                        
μ = 1/ω. Therefore, the demand function for x(t) = β(t)ω/p(t). The 
equlibirium price     can be obtained from the market condition  
                                          .

The above calculation of the equilibrium for the one-consumer 
economy is straightforward. Our economic problem is to examine 
(and compute for a special case, see Example 6 below) the competitive 
equilibrium of the multiconsumer economy in the similar way as that 
for the finite dimensional case.

Now consider the constrained variational problem, which is 
completely analogous with the constrained optimization problem 
P(λ,ω) in the previous section:

where λ1. . . λm
 are the welfare weights of consumer satisfying λa  

≥ 0 and                        .  By Corollary 1 in [16, p.219], the solution of the 
problem is a saddle point of the Lagrangian

where π Є ba(T) is the multiplier ( a fortiori it will be equlibirium 
price vector)  and the condition intΩ ≠ 0 is used.
5 We set aside the problem to specify an appropriate condition here.
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Concluding Remarks

The most important lesson of Negishi [21] is that the Lagrangian 
multiplier is nothing but an equilibrium price vector when the 
competitive equilibrium is characterized as a saddle point of the 
Lagrangian7 Indeed, all of the information concerning equilibrium is 
included in the Lagrangian8 (1) or (9) and the fixed point map (3) 
or (10). We have thus obtained a simple and elegant scheme, which 
describes the equilibrium state of a market generated by complex 
interactions between consumers and commodities.

The formulation of market equilibrium in the present paper 
opens up a close relationship between economic theory and optimal 
control theory, and we expect that our understanding of the former 
will be advanced by development of the latter. In particular, further 
developments in constrained optimal theory with Lagrangian 
multipliers on infinite dimensional spaces are earnestly desired. For 
instance, consider the question of the non-empty interior of Ω. This 
comes from the condition assumed in the Hahn-Banach separation 
theorem which requires that the at least one of separating convex sets 
has a nonempty norm interior. The same problem occurs in general 
equilibrium theory, and the problem has been handled by introducing 
the 'proper preferences' [19,24]. This idea and technique might provide 
some help for the mathematics of optimization problems. We would 
like to stress that economists and mathematicians can collaborate 
naturally in this area.

Given the commodities are distinguished from each other by their 
characteristics, the infinite dimensional commodity space naturally 
arises in economic theory. Bewley [5] was one of the first studies in 
which the commodity space is L∞(T), the space of essentially bounded 
functions on the interval T = [t0, t1] as a model of intertemporal 
trades, and proved the existence of equilibria under very general 
conditions. Mas-Colell [17] introduced the idea of commodity 
differentiation into an abstract concept that treats the differentiated 
commodity as a measure (distribution) m on a compact metric space 
K. This means that for each measurable set B, m(B) is a real value 
interpreted as an amount of the commodity m, that contains a portion          
               of the characteristics. In this definition, the commodities are set 
functions, not simply functions, as in our paper. Jones [13] simplified 
Mas-Colell's proof and Khan and Suzuki [15] further elaborated upon 
their work.

Mas-Colell [19] and Yannelis-Zame [24] generalized those 
theorems of Bewley and MasColell to more abstract spaces such 
asBanach lattices or topological vector lattices. However, there is an 
important distinction between [5,13, 15,17] and [19,24]. In the former 
group of works, the commodity spaces are the dual spaces (recall 
that L∞(T) = L1(T)*, and M(K) = C(K)* and they worked with the 
weak* topology. Consequently the price spaces are the predual spaces 
L1(T) for L∞(T), and C(K) for  M(K). In [19,24], the price spaces 
are simply the (norm) dual spaces. An appropriate topology in each 
case should be determined through both mathematical and economic 
considerations.

6Note that the price cannot be normalized independently of the normalization of λa. If 
we normalized the prices as                          as in Example 5. then we would have                 .

7This point was lost form the concept of G-equilibrium in Balasko [3,4]. Neverthless  
Balasko's equilibrium concept is appropriate for the analysis of local uniqueness and 
stability not discussed in this paper. For these important issues, readers should refer to 
[7,8,18].

8Physicists might well be reminded that the Lagrangian of the standard model, e.g., 
Kane [14] , includes all information for the interactions between the elementary particles.
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Let the saddle point be                 . Note that the saddle point still 
depends on (λa). The competitive equilibrium should be the fixed 
point of the map

where      is defined similarly as for the finite dimensional case:

                                                                                                                    (10)

 Suppose that the fixed point   of Φ exists. We can show that the 
saddle point                                           (or the solution of                   that sa- 
tisfies

              

is a competitive equilibrium exactly in the same way as in the 
previous section. By Theorem 2 in [5, p.523] , the equilibrium price  
must belong to L1(T). Hence we can write                                    .
                                    . In particular, the budget condition is  
written as                                                   .

for each a = 1. . . m. The equlibirum are characterized by FOC's 
evaluated at                                                

 

From these conditions, we can explicitly compute the equilibrium 
for the case of log-linear utilities.

Example 6: Let the utility function of the consumer a be the Cobb- 
Douglas form                                                             such that 
for all t Є T and                                 , and the endowment bundle is a consta- 
nt function                  for all t as in Example 5. Note that the 
case             for some a is not excluded. Let                         . We assume  
ω > 0. The following calculation will proceed similarly as in Example 
4.

The FOC (11) now reduces to

Integrating (13) and using the budget equation   
                     and                        , we have6

Summing (13) over a with the help of (14), it follows that 

Therefore, we have obtained:

Proposition 2: For the economy with log-linear utilities and constant 
endowment bundles, the competitive equilibrium is given by (15) and (16).
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The formulation of market equilibrium in the present paper 
opens up a close relationship between economic theory and optimal 
control theory, and we expect that our understanding of the former 
will be advanced by development of the latter. In particular, further 
developments in constrained optimal theory with Lagrangian 
multipliers on infinite dimensional spaces are earnestly desired. For 
instance, consider the question of the non-empty interior of Ω. This 
comes from the condition assumed in the Hahn-Banach separation 
theorem which requires that the at least one of separating convex sets 
has a nonempty norm interior. The same problem occurs in general 
equilibrium theory, and the problem has been handled by introducing 
the 'proper preferences' [19,24]. This idea and technique might provide 
some help for the mathematics of optimization problems. We would 
like to stress that economists and mathematicians can collaborate 
naturally in this area.
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