
Abstract

In this communication we investigate the application of the method of fundamental solutions 
(MFS) for the solution of plane orthotropic elastic problems. The displacements and stresses are 
approximated by linear combinations of the fundamental solutions of the Navier-Cauchy equations for 
orthotropic materials. The numerical results obtained illustrate that the MFS is accurate, convergent, 
and computational efficient, and thence it could be considered as a competitive alternative to existing 
methods for solving orthotropic elastic problems. 
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Introduction

The method of fundamental solutions (MFS) may be seen as one of 
the simplest methods for the numerical solution of certain boundary 
value problems [1-5]. It belongs to the family of meshless boundary 
collocation methods that may present remarkable results with a small 
computational effort. In the MFS, the solution of a given problem is 
approximated by a linear combination of the fundamental solutions 
with the sources located outside the solution domain. The advantages 
that the MFS has over the more classical domain or boundary 
discretization methods can be summarized as follows. First of all, 
it is a boundary-type method which means that it shares the same 
advantages of the boundary element method (BEM) has over domain 
discretization methods. Secondly, it is meshless and does not require 
the task of domain and/or boundary meshing which can be arduous, 
time-consuming and computationally expensive for methods needing 
for meshing. Thirdly, it does not involve costly integrations which 
could be otherwise troublesome as in the case, for example, the 
BEM-based methods. These features make the method very easy to 
implement, in particular for problems in complex geometries and 
high dimensions. Some surveys of the MFS and its application for the 
numerical solutions of elliptic boundary value problems are available 
in Refs. [6-9]. In recent years a few different meshless boundary 
discretization techniques which are different but also high related to 
the MFS have been proposed and used successfully, see for example 
the singular boundary method (SBM) [10-13].

The objective of this communication is to make the first attempt 
to extend the MFS for the solution of general orthotropic elastic 
problems. The displacements and stresses are approximated by using 
linear combinations of the fundamental solutions of the Navier-
Cauchy equations for orthotropic materials. The paper is organized 
as follows: the governing equations and the MFS formulation for 
orthotropic elastic problems are presented in Section 2, followed 
in Section 3 three benchmark numerical examples are well studied 
to illustrate the accuracy and efficiency of the method. Finally, the 
conclusions and remarks are provided in Section 4.

Governing Equations and The MFS Formulation for 
Orthotropic Elastic Problems

For the assumption of plane stress distribution in an orthotropic 
material, Hooke’s law takes the form (matrix representation)
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                                                                                                                  (1)

where the stress  бij and strain εij   are mean values taken through the 
thickness of the material; Sij(i,j=1,2)   and S66  are flexibility coefficients;   
E1 and E2 are Young’s moduli in the directions of  x1 and x2 axes; G12  
denotes the shear modulus for planes parallel to the x1- x2 plane; v12  
is Poisson’s ratio characterizing the contraction in the direction of the   
axis when tension is applied in the direction of the   axis. The Navier-
Cauchy equations for plane orthotropic materials [14], in the absence 
of body forces, referring to displacements  u1 and u1 are

                                                                                                                 (2)

                                                                                                                    (3)

in which  C11= S12/D, C12=-S12/D, C22=-S11/D, C66=1/S66, D=S11 S22-S12

These are subject to the boundary conditions

where  ti(x) denotes the component of boundary traction in the  ith 
coordinate direction, Γu  and Γt  construct the whole boundary of the 
domain Ω  which we shall assume to be piecewise smooth,  ui and   
ti represent the prescribed displacements and tractions, respectively.

Employing indicial notation for the coordinates of points x  and y,  
i.e.  x1,  x2 and  y1, y2 , respectively, the Kelvin fundamental solutions of 
the systems (2) and (3) can be expressed as [14]
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where α1  and α2  satisfy 

and

The fundamental solution Uij(y, x)  described above indicates the 
displacement produced at the point y  by a concentrated unit body 
force applied at the point  x, in which the first subscript (i ) denotes the 
direction of the displacement whereas the second one (j) the direction 
of the unit force. The fundamental solution of the tractions can be 
obtained by first calculating the fundamental solutions of strains and 
then applying Hooke’s law

The displacements can be approximated by linear combinations of 
fundamental solutions with respect to different source points  x as 
follows:

and the tractions are approximated accordingly. In the above 
equations, N is the specified number of sources,                                          is 
collocation points,            and           denote the unknown coefficients, 
and xj stands for the jth source point, which lies outside Ω. In the MFS, 
the source points x  are either pre-assigned or taken to be part of the 
unknowns of the problem along with the coefficients                    and              .  
In either case, the unknowns are determined so that the approximations 
(8) satisfy, in some sense, the boundary conditions (4) and (5) as well 
as possible [15, 16]. Usually, this is done by collocating the boundary 
conditions at a chosen set of boundary points           . In this work, for 
simplicity the locations of the source points are pre-assigned, taken to 
be a curve similar to the real boundary, and assume that the number                                                                                                                  

of source points is equal to that of collocation points. Once all 
coefficients are computed, the displacements and stresses at any point 
inside the domain can be obtained directly from Eqs. (8) and (9):

where

are fundamental solutions of stresses. The proper location of the 
source points is an important issue in the MFS with respect to the 
accuracy of the numerical solution [17-20]. In this paper, the distance   
between the source points to the boundary is computed by the 
following equation [6]:

where                       is the coordinates of the center of the compu- 
tational domain λ and   is a pre-assigned parameter. Once the 
parameter λ  is chosen, the distribution of the source points is then 
determined.

Numerical Results and Discussions

An infinite plate with a circular hole

An infinite orthotropic plate with a circular hole subjected to the 
uniform tensile forces   at infinity is studied first, as illustrated in 
Figure 1. The radius of the circular hole is . The analytical solution 
corresponding to this problem can be found in [21], Equation (31.11) 
on Page A plot of the distributed collocation and source points with 
the infinite plate is shown in Figure 1.
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Figure 1: An infinite plate with a circular hole under uniform tensile 
forces at infinity. Symbols  and o represent collocation and source 
points, respectively.
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Here the stress of interest is that at the edge of the hole, tangential 
stress бθ, where, as a number of solved problems show, it is the 
greatest. Figure 2 illustrates the variation of the stress бθ along the 
edge of the hole for two different orthotropic materials. For the 
numerical implementation, N=200   evenly distributed source 
points are chosen along the boundary and the distance between 
the fictitious boundary and the real boundary is taken to be λ=0.2, 
i.e.,. As shown in Figure 2, the results predicted by the MFS are in 
quite good agreement with the analytical solutions. This figure also 
illustrates that, for orthotropic materials, of all possible tangential 
stresses the greatest one occurs in the case that the tension is 
applied in a direction for which Young’s modulus is maximum, 
which is quite different from the isotropic material. In such case 
the maximum stress in an orthotropic plate ( бmax=3.067) is greater 
than that in a similar isotropic plate (бmax=3 ). Furthermore, for all 
cases discussed here the most severely stressed regions, as would be 
expected, are near the point (1,0) (the angular distance from this 
point does not exceed  100).

To study the sensitivity of the MFS-results with respect to the 
location of the fictitious boundary, Table 1 lists the relative errors 
of tangential stress   distributed along the edge of the hole, with 
S11=1.61E-6, S22=1.76E-6, S66=1.61E-7,  S12=1.61E-7, S66= 3.92E-6, 
and N=100. The relative error of the numerical solution is defined as

where                and          denote the numerical and analytical 
solutions at the  th calculated point, respectively. As Table 1 shows, 
the MFS results agree pretty well with the analytical solution when 
the value of the ratio   changes from 0.1 to 0.9. Beyond this range the 
numerical accuracy is found to be less satisfactory.

Normal pressure distributed uniformly along the edge of a hole

As a further illustration we consider an infinite plate with a hole 
subject to normal pressure distributed uniformly along the edge of 
the hole, as illustrated in Figure 3(a). The radius of the circular hole 
is   and the location of the collocation and source points is the same 
as that distributed in preceding problem. The analytical solution 
corresponding to this problem can be found in [21], Equation (32.5) 
on Page 182.

Table 2 shows the numerical results of tangential stress бθ  
distributed along the boundary, with S11=1.61E-6, S22=1.76E-6, 

S12=-1.61E-7,  S66=8.33E-6 and N=300, and λ=2. We can observe 
that the MFS results are in consistent agreement with the analytical 
solution, with the largest relative error less than 6E-6. Figure 3(b) 
plots the variation of tangential stresses around the boundary. The 
intensity of the stress is represented by distances outward from the 
circular hole along lines through the center of the hole. Note that the 
maximum stress occurs at regions near the direction of   and   axes, 
which agrees well with the distribution illustrated in [21], Figure 3.
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Figure 2: Tangential stress   distribution along the edge of the hole.

Angle
(degrees)

Location of the fictitious boundary (λ )

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 3.19E-4 9.06E-8 8.74E-10 1.55E-9 7.82E-10 2.90E-10 1.31E-7 2.57E-5 4.89E-4

30 4.23E-4 1.58E-7 9.47E-10 2.02E-9 1.06E-9 8.67E-10 2.07E-7 9.42E-5 1.82E-4

45 2.51E-3 2.56E-7 1.35E-9 1.07E-9 1.11E-9 2.16E-9 1.01E-7 5.20E-5 2.73E-3

60 8.78E-2 2.66E-5 1.05E-7 6.69E-9 4.58E-8 1.04E-7 2.54E-5 4.82E-4 6.62E-3

90 6.57E-3 2.69E-6 1.40E-9 6.97E-10 4.30E-10 1.39E-9 7.34E-7 5.19E-5 1.65E-3
Table 1: Relative errors of tangential stress along the edge of the hole as functions of various values of  λ.
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kI k

exactI
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k k
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A thick-walled cylinder

Finally, consider the problem of a circular orthotropic ring, fixed 
on its outer boundary, subjected to a uniform normal pressure  p=1 
on its inner boundary, as illustrated in Figure 4. The inner and outer 
radii of the cylinder are rα  and rb, respectively. Here, each boundary 
is divided into 60 equal intervals, i.e.,  N=200. The material constants 
are the same as those used in example 2.
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Since analytical solutions for this problem are not available, the 
problem is solved for an increasing sequence of values of the outer 
radius with a final ratio rb/ rα=2000. The final ratio approximates 
an infinite plate with a circular hole subjected to uniform normal 
pressure which is solved in the previous example 2. The distribution 
of tangential stress бθ around the inner boundary of the cylinder is 
studied and three of the distributions are shown in Figure 4(b). 
We find that the limiting case (ratio 2000) compares well with the 
analytical solution.

As the number of boundary nodes increases, Figure 5 illustrates 
the convergence curves of the tangential stress   at points along the 
inner boundary of the cylinder, with   and  . It can be seen that the 
relative errors decrease until the number of source points reaches  , 
after which a further increase in the number of source points does not 
improve substantially the accuracy of the numerical results.

(a) (b)

Figure 3: An infinite plate with a circular hole subject to normal pressure: (a) the geometry of the problem; (b) tangential stress   distributed 
along the boundary.

Angle (degrees) Exact solution MFS results Relative errors

0 1.585898 1.585893 2.865602E-6

30 0.722379 0.722383 5.552263E-6

45 0.539211 0.539209 3.362518E-6

60 0.705160 0.705159 1.587068E-6

90 1.612623 1.612624 3.087380E-7

Table 2: Tangential stresses along the edge of the hole.

(a) (b)

Figure 4: A thick-walled cylinder subjected to uniform internal pressure: (a) the geometry of the problem; (b) tangential stress  бθ distributed 
along the boundary.
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Conclusion

In this work, we describe the application of the MFS to plane 
orthotropic elastic problems. The method is very easy to implement, 
requires little data preparation, and, unlike boundary element 
method, it avoids potentially troublesome and costly integrations on 
the boundary. Numerical tests indicate that satisfactory accuracy can 
be obtained with relatively few degrees of freedom. In conclusion, 
the MFS could be considered as a competitive alternative for solving 
orthotropic elastic problems.
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