
Abstract

Digital imagery and remote sensing have become popular and accessible tools in many scientific research 
fields. Accuracy of classification, the degree of agreement between classification and ground truth, is 
traditionally quantified by an error matrix and summarized using agreement measures such as Cohen’s 
kappa. The kappa statistic, however, can be shown to be a transformation of the marginal proportions 
commonly referred to as omissional and commissional error rates.  Alternative estimation methods 
for these agreement measures include binomial, bootstrap and Bayesian techniques. In this study, we 
develop a Bayesian estimation method for omissional and commissional errors and discuss its utilization 
in variability assessment and inference. We will also show how additional or sequential information 
may be incorporated to improve the estimation situation. Techniques are demonstrated using previously 
published data.
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Introduction

In remote sensing, accuracy of classification is traditionally 
assessed by the comparison of classified pixels with ground truth 
using agreement measures such as Cohen’s kappa.  Conventionally, 
statistical inferences concerning the agreement measures have been 
based on asymptotic normality assumptions. While asymptotic 
methods may produce satisfactory results in certain instances, they 
fail to account for the underlying distribution of the classified data. 
This can result in poor and inconsistent inferences regarding the 
classification accuracy.

Accuracy of classification is often represented in the form of an 
error matrix [1, 2]. The rows of this table (i=1, 2, 3, ..., C) represent the 
computer or human generated classification and the columns (j=1, 2, 
3, ..., C) denote the reference or ground truth categories: 

where, xii is the number of pixels correctly classified in category i, 
Ni. and N.i are the corresponding marginal totals for classification and 
ground truth, respectively, and N = ΣNi. = ΣN.i. 

Various methods have been suggested for assessing the degree 
of ground truth agreement for each category. Common measures 
include conditional kappa, a general index of agreement [3]:

                                         ,

the omissional error rate, measuring the proportion of pixels 
incorrectly omitted from a classification:

                              ,
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and the commissional error rate, measuring the proportion of pixels 
erroneously committed to a classification category  [4]:

                             ,

where xii  ⁄ N.i and xii  ⁄ Ni.  are commonly referred to as producer’s 
and user’s accuracies [5].

The kappa statistic has been suggested as a means of assessing 
the degree of agreement in remotely sensed data because it equally 
weighs both omissional and commissional errors [6]. Remote sensing, 
however, presents a unique situation for conditional kappa in which, 
for a given image classification, the marginal ground truth totals, N.i 
, as well as classified totals for each class, Ni. , are constant. Under 
these conditions, (1) becomes a simple monotonic function of the 
omissional error rate [7]. It should also be noted that, although kappa 
treats misclassifications equally, in many cases it may be important 
to distinguish between the error types [8].  For these reasons, it will 
be more advantageous to carry out accuracy assessment based on the 
later two measures, namely Ol   and Ol

Using Bayesian estimation and maximum entropy, Shafii et al, 
[9] developed a methodology that may be used for estimation and 
inference regarding the aforementioned agreement measures. 
Furthermore, it has been shown that the Bayesian estimation 
technique is superior to that of the exact binomial, and that due to its 
ability to incorporate prior information, it can be more advantageous 
than the parametric bootstrapping technique [10].

In this paper, we review the Bayesian estimation technique for 
omissional and commissional error rates and illustrate its inferential 
use for image variability assessment and comparison. Furthermore, 
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we will demonstrate how additional information may be utilized to 
improve the estimation situation.

Methods

If the area and location being imaged are held constant, the marginal 
totals for ground truth, N.i are fixed and the diagonal elements of the 
error matrix, xii, can be considered as binomial variates:

                                                                                                                           (4)

where xii and N.i are as given above, and pii is the true proportion 
of correctly classified pixels. The Bayesian perspective for (Oi) may 
then be developed using (4) as a likelihood and assuming a prior 
distribution for pii.  Using a constant non-informative prior [9], π(pii ), 
the posterior distribution for pii|xii becomes:

The omissional error rate given in (2) may then be formed as a 
monotonic function of xii and the distribution of (Ol) may be derived 
from (4) and (5) using the following transformation:

where b and b' are constant values.

The commissional error rate is a function of binomial variates 
involving sums and ratios:

                                                                                                                (7)

where Σxij is the sum of the ith row elements over j, excluding the 
case i=j.  The xij are independent and distributed as:

                                                                                                                     (8)

Analytical derivation of a posterior distribution for (7) is 
troublesome, however a numerical derivation is possible using 
posterior distributions based on (4) and (8). To simplify the 
computations, an initial distribution for the inverse of xii / Ni. given by:

is generated.  The resulting values are subsequently reinverted to 
obtain the final distribution.  It should be noted, however, that this 
solution is restricted to xii > 0.  This does not pose a problem as this is 
a degenerate case where inferential evaluation of  Cl (or Ol) would not 
be meaningful. Estimates, moments, and probability intervals may 
then be derived using these posterior distributions.

Methods for pair-wise comparisons of independent estimates of 
error rates can also be developed. For example, let ω(Ok)and φ(Ol) be 
the posterior distributions for omissional errors Ok and Ol, respectively. 
Then the joint distribution of Ok and Ol under independence is defined 
as τ(Ok, Ol) = ω(Ok) φ(Ol) and the distribution of the difference, m(d kl 
);  dkl= Ok- Ol, is given by a transformation of variables:

                                                                                                                (9)

The posterior distributions given above and their associated 
inferential results may be derived through numerical integration and 
interpolation.

In the presence of auxiliary or sequential classification data for 
a common area or image, the Bayesian paradigm can provide a                                                                                       

mechanism for incorporating this additional information into the 
estimation process. If the underlying binomial parameters of the new 
and the preceding data matrices can be considered equivalent and 
generated from the same process, the posterior distribution derived 
for the original data set may be considered as a prior distribution 
for the new data and the posterior distribution in (5) augmented to 
become:

                                                                                                                                                                                             
where A∙Φk  is the previous posterior distribution defined in (5) and 

Θl  is the binomial likelihood (4) assumed for the new data. The term 
Φk∙Θl  can be rewritten as:

where N.i* = N.i + N.i'  is the sum of the marginal ground truth totals 
for the original and new data, respectively, and xij* = xii + xii' is the 
corresponding sum of correctly classified pixels.  This new likelihood 
is then used to update the posterior distributions for the specified 
error rates.

 All estimations and computations were carried out using 
custom C codes and SAS (2012). Program codes are available from the 
authors at: http://webpages.uidaho.edu/cals-statprog/IJAEM2016/
index.html.

Demonstration

The data used for the purpose of demonstration were taken from 
Congalton et al. [11]. Two photo-interpreters of equal skill were 
employed to evaluate the same aerial photographs of a forested area. 
The results of the classification are summarized in two error matrices 
given in Tables 1a and 2a. Shafii et al. [9] have used this data to 
demonstrate the Bayesian estimation for conditional kappa (1) as well 
as procedures by which to compare the estimated conditional kappas 
for a given category between the two interpreters. Here, we will 
concentrate our effort on the Bayesian estimation and comparison 
of omissional and commissional errors for each of the interpreters, 
individually and combined.

The estimation results for the first photo-interpreter (I) are provided 
in Table 1. b. Accuracy of classification was relatively high for both 
pine and oak categories as indicated by the estimated values of the 
omissional (.3396 and .4063, respectively) or commissional (.4262 
and .3968, respectively) error rates [12]. Whereas the classification 
accuracy for the cedar category was poor (O2=.7180) to moderate 
(C2=.3889), and that of cottonwood was poor overall (O4=.7143, and 
C4=.9048). The 95% probability limits for the above estimates suggested 
a reasonable estimation for all the categories except for cottonwood 
where the upper bounds on both omissional and commissional errors 
approached 1 (complete misclassification). The posterior probability 
distributions of omissional and commissional error rates for all the 
specified categories for interpreter I are given in Figure 1. Note that 
in both cases, the probability distributions of oak and pine categories 
appeared to be symmetrical. However, probability distributions for 
cottonwood were skewed and dispersed. This constitutes a case, i.e. 
small sample size and asymmetrical distribution for which inferences 
based on asymptotic results should be avoided.

Suppose that now additional data are provided from a second 
interpreter of the same aerial photograph. The estimation results for 
this interpreter (II) are provided in Table 2. b. Conclusions similar 
to those of interpreter I can be drawn regarding the classification 
accuracy of the four categories. Again, pine and oak had reasonable
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accuracy of detection, whereas the detection accuracies for cedar and 
cottonwood were poor to moderate. Posterior probability distributions 
of pair-wise differences (for both error types) may be utilized to assess 
the similarity of detection accuracy between the two interpreters. As 
an example, the distributions of pair-wise differences for omissional 
error rates in pine and cottonwood categories were centered on and 
encompassed zero (Figure 2). This indicates statistical similarity of 
these agreement measures between the two interpreters. The same 
was true for all the other categories and error types.

 

Given the similarity of additional data provided by interpreter II, it 
was feasible to consider a combined estimation of the omissional and 
commissional error rates. The combined error matrix is given in Table 
3a, and the corresponding estimation results are provided in Table 
3b. The interpretation of results remained relatively unchanged as 
compared to that made for interpreter I. The pine and oak categories 
showed acceptable detection accuracies, while the accuracies for the 
cedar and cottonwood categories were poor to moderate. Although 
the estimated values of omissional and commissional error rates
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Category Oi S.E. LL UL

Pine 0.3396 0.0635 0.2271 0.4758

Cedar 0.7180 0.0702 0.5612 0.8341

Oak 0.4063 0.0600 0.2947 0.5290

Cottonwood 0.7143 0.1491 0.3495 0.9154

Category Ci S.E. LL UL

Pine 0.4262 0.0329 0.3524 0.5326

Cedar 0.3889 0.0473 0.2796 0.6590

Oak 0.3968 0.0327 0.3186 0.4991

Cottonwood 0.9048 0.0146 0.8241 0.9882

Classified

Interpreter I 
Ground Truth

1 2 3 4 Total

1 35 14 11 1 61

2 4 11 3 0 18

3 12 9 38 4 63

4 2 5 12 2 21

Total 53 39 64 7 163

1 = Pine 2 = Cedar 3 = Oak 4 = Cottonwood

Table 1: Error matrix and Bayesian estimates of omissional,Oi, and commissional, Ci errors, along with their corresponding standard errors (S.E.) 
and lower (LL) and upper (UL) 95% percentile limits for interpreter I computed empirically from the estimated probability density.

ˆ

ˆ ˆ

Category Oi S.E. LL UL

Pine 0.3846 0.0657 0.2654 0.5213

Cedar 0.7895 0.0652 0.6351 0.8891

Oak 0.3968 0.0603 0.2857 0.5210

Cottonwood 0.8333 0.1443 0.4211 0.9634

Category Ci S.E. LL UL

Pine 0.4182 0.0332 0.3390 0.5263

Cedar 0.6000 0.0434 0.4639 0.8122

Oak 0.3091 0.0323 0.2351 0.4277

Cottonwood 0.9655 0.0065 0.9112 0.9992

Interpreter II
Ground Truth

Classified 1 2 3 4 Total

1 32 15 5 3 55

2 7 8 5 0 20

3 7 8 38 2

4 6 2 7 15

Total 52 38 63 6 159

1 = Pine 2 = Cedar 3 = Oak 4 = Cottonwood

Table 2: Error matrix and Bayesian estimates of omissional,Oi, and commissional, Ci errors, along with their corresponding standard errors (S.E.) 
and lower (LL) and upper (UL) 95% percentile limits for interpreter II computed empirically from the estimated probability density.

ˆ

ˆ

ˆ ˆ

Figure 1: Posterior probability distributions of omissional (a) and commissional (b) errors associated with the four forest categories for interpreter I.

ˆ
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were comparable for most of the categories, the estimated standard 
errors were smaller in all cases. This interpretation is evident from the 
posterior probability distributions of omissional and commissional 
error rates for both interpreters combined (Figure 3). Compared to
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Figure 1, while the magnitude of the most probable values for all 
categories and both error types remained relatively unchanged, 
the corresponding distributions appeared narrower and more 
concentrated on the specified estimated values. This indicates a more

Figure 2: Posterior probability distributions of pair-wise differences, Di, in omissional error rates between the two interpreters for pine (a) and 
cottonwood (b) categories.

Table 3. Error matrix and Bayesian estimates of omissional, Oi, and commissional, Oi errors, along with their corresponding standard errors 
(S.E.) and lower (LL) and upper (UL) 95% percentile limits for both interpreters combined as computed empirically from the estimated 
probability density.

Category Oi S.E. LL UL

Pine 0.3396 0.0635 0.2271 0.4758

Cedar 0.7180 0.0702 0.5612 0.8341

Oak 0.4063 0.0600 0.2947 0.5290

Cottonwood 0.7143 0.1491 0.3495 0.9154

ˆ

ˆ

Category Ci S.E. LL UL

Pine 0.4262 0.0329 0.3524 0.5326

Cedar 0.3889 0.0473 0.2796 0.6590

Oak 0.3968 0.0327 0.3186 0.4991

Cottonwood 0.9048 0.0146 0.8241 0.9882

Combined
Ground Truth

Classified 1 2 3 4 Total

1 67 29 16  4 116

2 11 19 8 0 0

3 19 17 76 6 6

4 8 27 3 12

Total 105 77 127 13 322

1 = Pine 2 = Cedar 3 = Oak 4 = Cottonwood

Figure 3: Posterior probability distributions of omissional (a) and commissional (b) errors associated with the four forest categories for both 
interpreters combined.
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precise estimation of the error rates as a result of incorporating the 
additional information into the estimation situation.

Conclusion

The Bayesian approach provides a sound mechanism for assessing 
detection accuracy in remote sensing. It avoids asymptotic normality 
requirements and produces more reliable results based on correct 
distributional and mathematical assumptions. Since remote sensing 
applications often utilize images taken sequentially in time, the 
Bayesian methodology can provide a means of incorporating such 
additional information into the estimation process, and thereby, 
improve the reliability and precision of the agreement measures.
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