
Abstract

To reduce boundary artifacts in image deblurring, we propose the normalized backprojector, as a 
replacement of the standard backprojector. The proposed normalized backprojector is designed to 
compensate for non-uniformity of contributions of image pixels to the observation. Simulation studies 
in this paper showed that the simple replacement of the standard backprojector with the normalized one 
reduced boundary artifacts efficiently.
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Introduction

In this paper, we consider the image deblurring whose task is to 
nd the true image f from the observed image g which is blurred and 
noised as

           g = Pf + n,                                                      (1)

where P is the linear transform that determines the blurring process 
and n represents a mean zero Gaussian noise. We denote pixel sets of 
f and g by and, respectively.

To denote image pixels, we will use the single index without the 
paren-thesis for some cases and the double index with the parenthesis 
for other cases. For instance, fv = f(v1,v2) is the intensity of the image f at 
the pixel v = (v1; v2). With the single pixel index, we will treat images 
g and f as one dimensional vectors. In such case, P in (1) will be 
regarded as an Λ |×|  Ω  matrix. We will also use following convention 
throughout this paper: boldface alphabets for images or matrices and 
normal alphabets for their intensities or entries, as in f = (fv), g = (gb), 
and P = (Pb,v).

The image deconvolution has many applications in science and 
engi-neering elds, and many methods have been proposed for it [1]. 
The image deconvolution, however, often produces unsatisfactory 
results due to various obstacles. The paper [2] characterizes obstacles 
of the image deconvolution into 4 categories; noise, insucient 
deconvolution, boundary artifacts, and incorrect blurring model. In 
this paper, we will discuss the suppression of boundary artifacts as the 
main concern.

The blurring process makes some near-boundary pixels of the 
observed image g to be influenced by `unseen pixels' (pixels in  Ω Λ). 
It is often regarded that the existence of unseen pixels causes boundary 
artifacts. To suppress boundary artifacts by removing unseen pixels, 
various boundary condition methods have been proposed. Among 
them, periodic, reactive, and anti-reective BCs haven been most 
popular. The periodic boundary condition extends the true image to 
satisfy the periodic condition on unseen pixels across the boundary. 
Similarly, reflective and anti-reflective boundary conditions extend 
the true image to satisfy corresponding conditions across the 
boundary. For details, see, e.g., [3,4]. These boundary condition meth-
ods, however, do not suppress boundary artifacts effectively in cases 
when imposed conditions are greatly mismatched to characteristics of 
images to be recovered [5]. Considering this fact, in this paper, we will 
not impose any restriction on unseen image pixels for the reduction 
of boundary artifacts. Such approaches are called free boundary 
condition methods in [5]. 

In this paper, we assume that the blurring matrix P satises

*Corresponding Author: Dr. Nam-Yong Lee, Department of Applied Mathematics, 
Inje University, Gimhae, Gyeongnam 621-749, Korea; E-mail: nylee@inje.ac.kr

Citation: Lee NY (2015) Normalized Backprojector for Suppression of Boundary 
Artifacts in Image Deblurring. Int J Appl Exp Math 1: 101. doi: http://dx.doi.
org/10.15344/ijaem/2015/101

Copyright: © 2015 Lee. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

International Journal of
Applied & Experimental Mathematics

Nam-Yong Lee*
Department of Applied Mathematics, Inje University, Gimhae, Gyeongnam 621-749, Korea

Int J Appl Exp Math                                                                                                                                                                                                IJAEM, an open access journal                                                                                                                                          
                                                                                                                                                                                                                                    Volume 1. 2015. 101   

                                                       Lee, Int J Appl Exp Math 2015, 1: 101
                                                       http://dx.doi.org/10.15344/ijaem/2015/101

                 for all               and                                       (2)

                             for all                                                       (3)      

    and

                                      for all                                              (4)

Described three conditions (2), (3), and (4) are very mild assumptions 
on image deblurring problems. For example, the condition (2) must 
hold for any kind of photon diusion related deblurring processes. The 
second condition simply indicates that measurement sensitivities on � 
are uniform. The third condition implies that in image deblurring 
we will consider image pixels only that give some contribution to the 
observation. The third condition denes normalization coecients.

                                                                                                (5)

which measures the contribution of the image pixel          to the 
observation on the image pixel set�. In this paper we will call the

       Q = W-1Pt                                                                                                                            (6)

normalized backprojector, where W is the diagonal matrix dened by 
(Wx)v = wvxv for each image x on defined on Ω and Pt is the transpose 
matrix. Here the term `normalized' comes from the fact that Q1�  = 1Ω
,where 1

A
 is the all-one image dened on A.

Any iterative deblurring approaches to (1) have two types of matrix-
vector multiplications; one is of the form Px for some image x dened 
on Ω and the other is of the form Pty form some image y defined on Λ.
We call the former projection of the image x and the latter 
backprojection of the image y. We also call the matrix P the projector 
and the transpose matrix Pt the standard backprojector. Here the term 
`standard' is used to distinguish the normalized backprojector Q from 
Pt.  

In this paper, we will show that a simple replacement of the standard 
backprojector Pt with the normalized backprojector Q can reduce 
boundary artifacts eciently. We will also show why such a simple 
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leads to the efficient reduction of boundary artifacts. For these 
purpose, we will consider two iterative deblurring methods; the 
Landweber iteration and the conjugate gradient method.

In this work, we distinguish boundary artifacts from ringing artifacts 
which are often noticeable near strong edges in image deblurring. 
Ringing artifacts are caused by the fact that pixel values in smooth 
image region have faster convergence trend than pixel values near 
edges in iterative de-blurring methods. Ringing artifacts make ripples 
near edges in deblurred images [1]. Those ripples by ringing artifacts 
sometimes look similar to rip-ples by boundary artifacts. But, they 
are different in at least following two aspects: (a) Ripples by ringing 
artifacts show lines that resemble strong edge lines nearby, but ripples 
by boundary artifacts show lines that resem- ble boundary lines, thus, 
for rectangular boundaries, ripples by boundary artifacts are always 
exactly vertical or horizontal straight lines. (b) Ringing artifacts are 
caused by non-uniformity in convergence trend and, in some de-
gree, inevitable in all iterative deblurring methods, while boundary 
artifacts are caused by mistreatment on image pixel values and hence 
preventable if pixel values are treated correctly, for instance, by using 
the normalized back projector proposed in this paper. Obviously, the 
last statement is the main claim of this paper.

This paper is outlined as follows. In Section 2 we explain why the 
use of the normalized backprojector is a natural choice in image 
deblurring applications. In Section 3 we present simulation results of 
the proposed method. Finally, we have discussion and conclusion in 
Section 4.

Methods

 To solve (1), we consider the Tikhonov regularization formulated 
by

                                                                                                 (7)  

Where           is the norm dened by the weighted inner product

                                                                                                 (8) 

The use of the w-weighted inner product is motivated by the 
intention to treat image pixels proportionally to their contribution to 
the observation on�. Simulation studies in Section 3 will show that the 
use of the w-weighted norm leads to better boundary artifact removal 
than the standard norm in(7).

In cases when  = 0, the Tikhonov regularization (7) becomes the 
least square problem. The least square problem can be approximated 
by the Landweber iteration that, starting from arbitrary f0, takes 

                                                                                                  (9)

with 0 < β < 2бmax , where бmax is the largest singular value of P. As 
a special case of gradient descent, the Landweber iteration is derived 
from the dierentiation of the variational form, i.e.,

      
                                                                                                 (10)   

Here we emphasize that the dierential is computed with respect to the 
standard inner product. To nd out what happens if the differentiation 
is computed with respect to the inner product < .;. >U dened by a 
positive definite matrix U, i.e.,                                                           we 
generalize the denition of the gradient of a real-valued differentiable 

function   at the image x with respect to the inner product <.;.>U, 
denoted by                  the unique image  dened on  satisfying

                                                                                                             (11)

A simple consideration shows that

                                                                                                               (12)

This result indicates that if the differentiation of the least square 
functional is computed with respect to the w-weighted inner product 
in (8), then the corresponding Landweber iteration becomes

                                                                                                           (13)

where Q is the normalized backprojector in (6). Simulation studies 
in Section 3 will show that this normalized Landweber iteration 
(13) removes boundary artifacts more eectively than the standard 
Landweber iteration (9).

With the same argument, the Tikhonov regularization (7) depends 
on the inner product used in the dierentiation. For example, if the 
standard inner product is used, then the Tikhonov regularization (7) 
leads to the normal equation of the form 

Ptg = (PtP + λW)f                                                                              (14)

In Section 3, we will approximate the solution of (14) by the 
conjugate gradient iteration. Similarly, if the w-weighted inner 
product is used, then the Tikhonov regularization (7) leads to the 
normal equation of the form 

Qg = (QP + λI)                                                                               (15)

where I is the identity matrix. In Section 3, we will approximate the 
solution of (15) by the normalized conjugate gradient iteration. Here 
the normalized conjugate gradient iteration means that the iteration is 
performed with respect to the w-weighted inner product. Simulation 
studies in Section 3 will show that the normalized conjugate gradient 
iteration applied to (15) removes boundary artifacts more eectively 
than the standard conjugate gradient iteration applied to (14).

Before we close this section, we note that the normalized 
backprojector Q is the transpose of the projector P with respect to 
the w-weighted inner product in a sense that for all images x on  

[y;Px] = ytPx = (Qy)tWx =< Qy; x >w                                        (16)

Ω and all images y on �, where [; ] is the standard inner product of 
images on �. We also note that the governing matrix QP+I in (15) is 
symmetric with respect to the w-weighted inner product, in a sense 
that for all images x; z on.

   < z; (QP + I)x >w=< (QP + I)z; x >w                                                 (17)

This is the reason why the normalized conjugate gradient iteration can 
can performed for (15).

It is also worth to note that algebraically, (14) and (15) are identical. 
Thus, if conjugate gradient iterations are completely executed, then 
final results must be identical. In practical use of conjugate gradient 
iterations, however, incompletely iterated conjugate gradient 
approximates are preferred. In such case, results are very dierent. 
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Simulation Studies

We conducted simulations to compare normalized versions of 
Landweber and conjugate gradient iterations with standard version to 
evaluate the effect of  the normalized backprojector. For this purpose, 
we used test images (a) `couple' and `boat' in Figure 1.

For simulation studies, we consider translation-invariant blurring 
models. In such cases, the blurring process Pf can be described by 
the truncated convolution of a point spread function (PSF) k and the 
image f . To be specific,

                                                                                                           (18)

Here suppk, the support of k, is {u | Ku > 0}g. The conditions described 
in (2), (3), and (4) imply that the PSF k is nonnegative, its components 
have sum 1, and the point (0; 0) Є suppk ; Pf is dened on �Λ, where b Є  
��Λ if and only if b - suppk С  Ω. We used the horizontally and vertically 
symmetrical Gaussian PSF k, and regard the index of the center of 
the Gaussian PSF as (0; 0). For the diagonal PSF, we assumed that the 
upper-left corner pixel has the index (0; 0) and the PSF decays in the 
diagonal direction from the upper-left corner pixel to the lower-right 
corner pixel. Figure 2 shows 15 × 15 (a)(left) Gaussian and (b)(right) 
diagonal PSFs.

Figure 3 shows observed images, which are blurred by (a) Gaussian 
and (b) diagonal PSFs and then noised mean zero Gaussian noises 
with the standard deviation  σ = 0:5% of means of blurred images.

In simulations, we chose the 1000-th iterates for Landweber 
iterations and 100-th iterates for conjugate gradient iterations.

Figure 4 shows deblurred images from Figure 3(a) by (a) standard 
and (b) normalized Landweber iterations, and Figure 5 shows 
deblurred images from Figure 3(b) by (a) standard and (b) normalized 
Landweber iterations. Visual comparison in Figure 4 and 5 clearly

 
shows that the normalized backprojector removes boundary artifacts 
more eectively in the Landwe- ber iteration. Figure 4 and 5 show 
artifacts in recovering near boundary pixels. This is well expected 
phenomenon since near boundary pixels give less contribution to the 
observation, recovering them is subject to produce more artifacts than 
recovering near center image pixels. The main problem of boundary 
artifacts is the propagation of errors as in Figure 4(a) and 5(a).

Figure 6 shows deblurred images from Figure 3(a) by (a) standard 
and (b) normalized conjugate gradient iterations, and Figure 7 shows 
deblurred images from Figure 3(b) by (a) standard and (b) normalized 
conjugate gra-dient iterations. Visual comparison in Figure 6 and 7 
clearly shows that the normalized backprojector removes boundary 
artifacts more effectively in the conjugate gradient iteration.

As mentioned earlier, the use of the w-weighted inner product in 
the Tikhonov regularization (7) is motivated by the intention to treat 
image pixels proportionally to their contribution to the observation 
on . To find out whether such intension leads to improved boundary 
artifact removal or not, we considered the Tikhonov regularization 
formulated by

                                                                                                           (18)
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Figure 1: Test images. (a)(left) `peppers' (b)(right) `boat'.

Figure 2: PSFs. (a)(left) Gaussian (b)(right) diagonal.

Figure 3: Observed images, which are blurred by 15 × 15 (a)(left) Gaussian 
and (b)(right) diagonal PSFs and then noised mean zero Gaussian noises 
with the stan-dard deviation  σ = 0:5% of means of blurred images.

Figure 4: Deblurred images from Figure 3(a) by (a)(left) standard and (b)
(right) normalized Landweber iterations.

Figure 5: Deblurred images from Figure 3(b) by (a)(left) standard and (b)
(right) normalized Landweber iterations.
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As shown in Section 2, this variational problem depends on the 
inner product used in the dierentiation. The use of the standard inner 
product leads to the normal equation of the form

                       Ptg = (PtP + λI)f,                                               (20)

where I is the identity matrix, and the use of the w-weighted inner 
product leads to

                     Qg = (QP + λW-1)f ;                                         (21)

As in (7), we approximated solution of (20) and (21) by standard 
and normalized conjugate gradient iterations, respectively.

Figure 8 shows deblurred images from Figure 3(a) by (a) standard 
and (b) normalized conjugate gradient iterations applied to (20) and 
(21), respectively, and Figure 9 shows deblurred images from Figure 
3(b) by (a) standard and (b) normalized conjugate gradient iterations 
applied to (20) and (21), respectively. Again, visual comparison 
in Figure 8 and 9 clearly shows that the normalized backprojector 
removes boundary artifacts more effectively in the conjugate gradient 
iteration.

The comparison between Figure 8(b) and 6(b), however, shows 
that the boundary artifacts removal in Gaussian deblurring by the 
normalized conjugate gradient iteration applied to (21) is not as 
good as that applied to (15). For detailed comparison, see Figure 
8(d) and 6(d) and RSE results of Figure 8(b) and 6(b). Similarly, the 
comparison between Figure 9(b) and 7(b) shows that the boundary 
artifacts removal in diagonal deblurring by the normalized conjugate 
gradient iteration applied to (21) is not as good as that applied to (15),
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either. For detailed comparison, see Figure 9(d) and 7(d) and RSE 
results of Figure 9(d) and 7(d). Based on these two comparisons, we 
can conclude that the use of the w-weighted inner product improves 
boundary artifact removal, as compared with the use of the standard 
inner product, in the normalized conjugate gradient iterations.

The comparison between Figure 8(b) and 6(b), however, shows 
that the boundary artifacts removal in Gaussian deblurring by the 
normalized conjugate gradient iteration applied to (21) is not as 
good as that applied to (15). For detailed comparison, see Figure 
8(d) and 6(d) and RSE results of Figure 8(b) and 6(b). Similarly, the 
comparison between Figure 9(b) and 7(b) shows that the boundary 
artifacts removal in diagonal deblurring by the normalized conjugate 
gradient iteration applied to (21) is not as good as that applied to (15), 
either. For detailed comparison, see Figure 9(d) and 7(d) and RSE 
results of Figure 9(d) and 7(d). Based on these two comparisons, we 
can conclude that the use of the w-weighted inner prod uct improves 
boundary artifact removal, as compared with the use of the standard 
inner product, in the normalized conjugate gradient iterations.

On the other hand, Figure 8(a) and 6(a) produced almost identical 
results. Similarly, Figure 9(a) and 7(a) produced almost identical 
results. Based on these comparisons, we can conclude that the use of 
the w-weighted inner product does not improve boundary artifact 
removal in the standard conjugate gradient iterations. This result also 
shows that the use of the normalized backprojector instead of the 
standard backprojector really removes boundary artifacts, not the use 
of the w-weighted norm itself in the Tikhonov regularization.

Conclusion and Discussion

In this paper, we suggest the normalized backprojector Q = W-1Pt 
as a replacement of the standard backprojector Pt for the suppression

Figure 7: Deblurred images from Figure 3(b) by (a)(left) standard and (b)
(right) normalized Landweber iterations.

Figure 6: Deblurred images from Figure 3(a) by (a)(left) standard and 
(b)(right) normalized conjugate gradient iterations.

Figure 8: Deblurred images from Figure 3(a) by (a)(left) standard and 
(b)(right) normalized conjugate gradient iterations.

Figure 9: Deblurred images from Figure 3(b) by (a)(left) standard and 
(b)(right) normalized conjugate gradient iterations.

http://dx.doi.org/10.15344/ijaem/2015/101
http://dx.doi.org/10.15344/ijaem/2015/101


Citation:  Lee NY (2015) Normalized Backprojector for Suppression of Boundary Artifacts in Image Deblurring. Int J Appl Exp Math 1: 101. doi: http://dx.doi.
org/10.15344/ijaem/2015/101

of boundary artifacts related to the deblurring problem g = Pf + n in 
(1). 

Simulation results showed that the proposed normalized 
backprojector can remove boundary artifacts eectively in Landweber 
and conjugate gradient iterations.

The success of the proposed normalized backprojector can be viewed 
as a benet of using unmatched projector/backprojector pairs, i.e., 
(P;Q) instead of (P;Pt). The use of unmatched projector/backprojector 
pairs in medical imaging area has been gaining the popularity since 
it often provides faster approximation, faster computation, or some 
specic effect such as ring artifact removal [6, 7]. In this work we used 
the unmatched projector/backprojector pair in image deblurring 
problem to remove the boundary artifacts. We expect that it is also 
possible to accelerate the convergence or reduce the computational 
burden, by using unmatched projector/backprojector pair in image 
deblurring problems.
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