
Abstract

Background: Biofilms predominate in nearly all nutrient-sufficient ecosystems, both natural and clinical. 
In clinical settings, bacteria often encounter antimicrobial and DNA damaging agents. Factual evidence 
shows that more and more biofilm inducing antimicrobials trigger the SOS response of bacteria. This 
triggering leads to a link between biofilms and SOS. The purpose of this article is to review the published 
findings about this link.
Methods: This article reviews the research progress on the role of the SOS response in biofilm initiation, 
maturation, defense and evolution.
Results: Our review of the biomedical literatures indicates that the SOS response to some antimicrobials 
induces biofilm formation by several species of bacteria. SOS not only plays a role in biofilm maturation 
but also contributes to biofilm defense against stress and drives evolution.
Conclusion: Biofilms act like a brewing fortress where the SOS response to external and internal stresses 
fuels mutagenesis that promotes diversification inside biofilms. Biofilms appear to be a hotspot of 
evolution driven by SOS.
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Introduction

Unicellular microorganisms are able to develop multicellular and 
structured communities, a phenomenon termed biofilms, discovered 
in the latter half of last century [1]. Biofilms, in fact, predominate 
in nearly all nutrient-sufficient ecosystems [2], natural and clinical. 
Unlike the bacteria that inhabit natural environments, bacteria that 
live on biotic matter, e.g., human hosts, or abiotic environments, such 
as hospital settings, often encounter antimicrobial and DNA damaging 
agents. The understanding that biofilms contribute to antimicrobial 
resistance [3, 4] led to a thought that such agents at sub-inhibitory 
concentrations might induce biofilm formation [5]. This hypothesis 
has been tested for a decade. The relevant findings come from a 
wealth of studies. For example, biofilm formation of Pseudomonas 
aeruginosa and Escherichia coli was induced by the sub-inhibitory 
aminoglycoside antibiotics [6,7]. Vibrio cholerae biofilm formation 
was increased by bile acids [8]. Biofilm formation of Mycobacterium 
avium was stimulated by hydrogen peroxide [9]. Further, P. aeruginosa 
biofilm formation was stimulated by DNA replication inhibitors and 
the antibiotics, such as quinolone antibiotics, hydroxyurea, nalidixic 
acid and ciprofloxcian [10-14]. These observations demonstrate that 
biofilms are induced when the bacteria encounter antimicrobial 
stress, so termed the stress-inducible biofilm [12]. Because its 
formation is induced by antimicrobial treatment, such biofilm must 
have a profound impact not only on clinical practice of antimicrobial 
treatment, but also on the molecular evolution of antimicrobial 
resistance in biofilms. As more and more antimicrobials have been 
found to trigger the SOS response of bacteria (Figure 1) [15], some 
of which increase biofilms, this article intends to review the research 
progress about the link between biofilms and SOS of bacteria.

The SOS Response to Antimicrobials Induces Biofilm 
Formation

Bacteria launch an emergency response, named after the 
international telegraph distress signal termed “SOS”, when they 
encounter environmental threats, such as antimicrobials and UV 
radiation. The original hypothesis for SOS came from the observation 
that reactivation of the UV-irradiated phage increased greatly when 
the viruses replicated in irradiated E. coli cells [16], a phenomenon so 
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called Weigle reactivation [17]. Further, when E. coli lysogens that 
bored prophage λ in their chromosome were irradiated by UV, 
prophage was induced, causing cell lysis and phage release [18-21]. 
The cell division was inhibited. The aftermath of radiation including 
division arrest, prophage induction and UV-induced mutation, was 
thought to be interrelated [22] and collectively concluded as DNA 
damage repair through the SOS response (Figure 1) [17,23]. The SOS 
response, in particular, is controlled by interplay of an SOS repressor 
LexA (locus for X-ray sensitivity A [24]) and a sensor/inducer RecA 
(recombinase A). They alternatively switch SOS on or off (Figure 1) 
[25] as reviewed previously [26]. In the off-mode, LexA represses 
expression of the SOS genes via binding to the conserved sites (SOS 
boxes) upstream of these genes in the absence of significant DNA 
damage (Figure 1). There are at least 43 SOS genes mostly involved 
in DNA damage repair in E. coli [27,28]. In the on-mode, RecA, a 
coprotease, senses DNA damage signals [single-stranded (ssDNA)] 
and becomes activated to assume a filament structure able to bind 
to ssDNA [29,30]. The ssDNA-RecA coprotease complex activates 
autocleavage activity of the LexA polypeptide (Figure 1) [25]. Once 
self-cleaved, LexA dissociates from the SOS boxes upstream of the 
SOS genes and derepresses these genes. SOS is thereby turned on. 
The phage λCI repressor is also auto-cleaved, resulting in prophage 
induction (Figure 1) [31]. The SOS gene products of the bacterial host 
act to repair or bypass DNA damage, but those of phage λ switch the 
viral life style from lysogenic to lytic growth (Figure 1) [32]. With a 
bacterial cell recovering from the DNA damage and the activity of 
RecA coprotease declining, LexA becomes dimmerized and turns off 
SOS by binding back to the SOS boxes [33].

The link of the SOS response to biofilm formation was implicated 
by the finding of the dual effects of some DNA damaging agents on 
SOS and biofilm inductions [11]. These antimicrobial agents at the
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sub-inhibitory concentrations, such as hydroxyurea, nalidixic acid 
and ciprofloxacin, induce the SOS response in most bacteria [15], 
and this response insures cell survival. Surprisingly, these agents 
stimulate biofilm formation [10-14]. Additionally, hydrogen peroxide 
that triggers oxidative stress and the SOS response [34] stimulates 
biofilm formation in M. avium [9]. To study the role of SOS in biofilm 
formation, we can lock the SOS circuit in the off mode even in the 
presence of the SOS signal (Figure 1). This has been achieved by 
introducing mutations that block the self-cleavage of LexA so that 
the mutant LexA protein becomes non-cleavable and the lexA Ind(-) 
mutant becomes non-inducible, repressing the SOS genes even when 
the cells encounter DNA damage [35]. With the lexA Ind(-) mutant, 
the effects of SOS on biofilm

formation can be measured by comparison of biofilm masses between 
the wild-type strain and the mutant in the presence of DNA damage 
agents [36]. Alternatively, a recombinase A deficiency by null 
mutations can preclude the SOS response [37]. The pleotropic effects 
the recA mutations may complicate the experimental analysis in some 
cases.

With construction of the SOS mutants, great progress has been 
made in testing the connection of SOS with biofilms (Table 1). The 
recombinase A deficiency of Streptococcus mutans that precludes the 
SOS response reduced not just acid tolerance but density and cellular 
viability of biofilm [38]. Fibronectin-binding proteins (FnBPs) of 

Staphylococcus aureus, the components of a proteinaceous biofilm, 
was induced by activation of a LexA-dependent SOS response 
[39]. Repression of the SOS regulons in E. coli with engineered 
bacteriophage to over-express lexA increased not only bactericidal 
effects of antibiotic-resistant bacteria, persister cells, and biofilm cells, 
but reduced the number of antibiotic-resistant bacteria arising from 
an antibiotic-treated population [40]. Listeria monocytogenes formed 
biofilms under continuous-flow conditions, under which the SOS 
response was induced. Deletion of yneA, the SOS regulon member, 
reduced the biofilm formation [41]. The most conclusive experiments 
at that time were performed [12] with P. aeruginosa SOS strains 
carrying mutations inactivating SOS sensor RecA [37] or rendering 
LexA repressor non-cleavable [35]. The results indicated that 
biofilm production was stimulated by a DNA replication inhibitor 
hydroxyurea at the sub-inhibitory concentration, and the stimulation 
diminished by either the recA knock-out mutation in which SOS was 
precluded or the non-cleavable LexA mutation in which SOS was not 
inducible [lexA Ind(-)][12]. Evidently, as biofilm formation decreases 
when SOS is in the off-mode, these findings support a conclusion that 
SOS contributes to biofilm formation. This conclusion was further 
tested. Treatment of P. aeruginosa with DNA-damaging antibiotic 
ciprofloxacin at sub-inhibitory concentrations also stimulated biofilm 
formation [14]. The biofilm mass was reduced when SOS was non-
induced in the lexA Ind(-) mutant, the results indicative of SOS 
involvement in biofilm formation. The decrease in biofilm appears 
due to LexA repression of motility, which was involved in the initial 
adherent event in biofilm development [14]. These results suggest that 
bacterial adhesion increases during SOS. This conclusion receives 
further support from a study of adherence of E. coli K-12 strains to 
abiotic surface. The attachment, in fact, induced the SOS response 
that subsequently enhanced biofilm formation since the lexA Ind(-) 
mutant did not form biofilms [42]. Thus, bacterial adhesion mediated 
by flagella appears to increase under SOS (Figure 2).
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Figure 1: The SOS response in bacteria. Antibacterials or environmental 
stimuli, such as DNA damage antibiotics or UV, cause DNA replication 
stall, resulting in DNA strand breaks and singlr-strand DNAs(ssDNAs). 
The ssDNA are the SOS signal detected by RecA coprotease. The 
coprotease stimulates LexA auto-catalytic cleavage. This cleavage 
dismisses repression of the SOS genes to activate the SOS response. The 
SOS genes are thereby expressed for the repair of DNA  damage. The 
phage repressor is also auto-cleaved, resulting in prophage induction. 
The repair is error-prone, thus highly mutagenic and responsible for 
diversification in a population.  

Figure 2: A dual role of SOS in biofilm development. For non-lysogns, 
cell attachment induces SOS that increases biofilm formation. For 
lysogens, the attachment-activated SOS and inability of CRISPR to the 
subsequent expression of phage-related genes lead to prophage induction 
and cell lysis. The lysogens are also reinfected by superinfection variants. 
Eventually, DNA is released to enhance biofilm formation of the non-
lysogens.
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SOS Plays a Role in Biofilm Maturation

Not just the initial adhesion, the downstream events are also 
affected, such as biofilm maturation, cell death, dispersal and 
variant formation in the biofilm life cycle. Of those, the biofilm 
variant formation relies on a filamentous Pf4 prophage [43] that 
was associated with cell lysis and DNA release into biofilm matrix. 
Although the Pf4 phage was partly controlled by two-component 
regulator BfmR through PhdA [44], conversion of the Pf4 phage into 
a superinfection (SI) variant was activated by DNA damage and the 
resulting SOS response (Figure 2) [45]. As SI variants reinfect and 
kill the prophage-bearing hosts in biofilms, DNA released from the 
dead cells is likely to go into biofilm matrix for biofilm maturation 
as reviewed recently [46,47]. Understandably, when the bacteria 
that are lysogenized by phage DMS3 acquire immunity to the phage 
infection, both biofilm formation and swarming motility are inhibited 
[48,49]. Such an adaptive immune system present in many archaea 
and bacteria is operated by clustered regularly interspaced short

palindromic repeats (CRISPR) and the CRISPR-associated (Cas) 
proteins in which a small portion of viral DNA is inserted at the 
CRISPR locus in the host genome to provide adaptive immunity to 
the mobile genetic element [50, 51]. One of possible mechanisms for 
the CRISPR-dependent inhibition of biofilm formation is disruption 
of cell adhesion in that the attached cells are killed due to inability of 
the CRISPR-engaged strain to downregulate expression of the SOS-
regulated phage-related genes (Figure 2). The inhibition is biofilm-
specific as growth and viability under planktonic conditions are not 
noticeably affected by these phage-related genes [52]. Since bacterial 
attachment activates the SOS response [42] and phage-related gene 
expression [52], it seems paradoxical that SOS enhances biofilm 
maturation while inducing suicidal expression of phage-related gene 
of the attached cells. Although biofilm formation by lysogens of a 
single species is inhibited by attachment-activated SOS and inability of 
CRISPR to the subsequent expression of phage-related genes, biofilms 
of mixed strains of lysogens and non-lysogens are likely to increase via 
several mechanisms, one of which is DNA release from lysed lysogens 
into biofilm matrix (Figure 2). Based on our current understanding, 
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Table 1: A connection of SOS with biofilm dynamics

Species Antimicrobials SOS-induced biofilm targets SOS Effects on biofilm References 

Gram negative

P. aeruginosa Ofloxacin, norfloxacin and 
ceftazidime 

LexA? Increase [10] 

P. aeruginosa Ofloxacin
Ciprofloxacin

Persisters
Toxin/antitoxin locus, tisAB/istR

LexA?
LexA

Resistance
Resistance

[93, 94]
[66, 70]

E. coli and P. aeruginosa Aminoglycosides LexA? Increase [6] 

Vibrio cholerae Bile acids LexA? Increase [8] 

P. aeruginosa Hydroxyurea, nalidixic acid LexA? Increase [11] 

P. aeruginosa Pf4 prophage LexA? Superinfection (SI) 
variants and DNA release

[43]

Multiple-species Pyocyanin Diversification [87] 

E. coli Phage engineered to overproduce 
LexA 

LexA Resistance [40] 

Pf4 phage superinfection variant LexA Maturation [45] 

P. aeruginosa Hydroxyurea,
Ciprofloxacin

Cell motility and attachment LexA
LexA

Increase
Increase

[12]
[14]

P. aeruginosa Mismatch repair system (MRS) Diversification, resistance 
evolution 

[89, 92] 

E. coli Ofloxacin Starvation LexA Tolerance [72]. 

E. coli Cell attachment LexA Increase [42] 

E. coli Bacteriocin Colicin R LexA Decrease [84] 

P. aeruginosa Bacteriocin Pyocin LexA Maturation [83, 85, 86] 

E. coli and P. aeruginosa Tetracycline and cephradine LexA? Increase
Plasmid transfer

[57]

P. aeruginosa Suppression of phage-related 
genes by CRISPR 

LexA Decrease [52] 

Gram positive

M. aviumwas Hydrogen peroxide LexA? Increase [9] 

S. aureus Fibronectin-binding proteins LexA Increase [39] 

S. aureus RecA LexA? Increase [38] 

L. monocytogenes YneA LexA Increase [41] 

L. monocytogenes Superoxide and hydroxyl 
radicals 

RecA LexA? Increase [71] 

https://doi.org/10.15344/2456-4028/2016/113


Int J Clin Med Microbiol                                                                                                                                                                                      IJCMM, an open access journal                                                                                                                                          
ISSN: 2456-4028                                                                                                                                                                                                    Volume 1. 2016. 113  

SOS plays multiple roles in biofilm development starting from adhesion 
to maturation via the phage-mediated matrix DNA release and genetic 
variation. Yet, the role of CRISPR in maturation of heterogeneous 
lysogens-nonlysogen or multi-species biofilms needs further study.

SOS Contributes to Biofilm Defense Against Stress

Bacteria form biofilms in many habitats, either natural or 
experimental, by attaching to either abiotic or biotic surfaces, to 
protect themselves from environmental hazards [1]. Biofilms can 
be environmental reservoirs of antibiotic resistance as reviewed 
recently [53]. The biofilm matrix of P. aeruginosa displays protective 
properties against UV radiation [54]. Biofilms cells are 10-to-1,000 
folds less susceptible to certain antimicrobial agents than their 
planktonic counterparts [55]. Obviously, biofilms are defensive 
against hazardous agents. There are several factors that contribute 
to the biofilm defence as summarized lately [53], such as the barrier 
of polysaccharide matrix, the slow or no growth of some biofilm 
cells, the resistant phenotype of persister cells, and the genotype 
of antibiotic resistance genes. SOS plays an important role in the 
defence mechanisms. First, SOS is implicated in biofilm resistance to 
antimicrobials due to antibiotic resistance genes in bacterial genomes 
or plasmids (Figure 3). One of these genes encodes β-lactamase that 
inactivates the β-lactam antibiotics. The β-lactamase-producing 
bacteria increase the protection in biofilms [56]. These resistance 
genes are often carried by plasmids, of which the transfer rate can 
be enhanced by sub-inhibitory concentrations of tetracycline and 
cephradine among the biofilm biomass [57]. The β-lactam antibiotics 
induce SOS [58], under which both the copy number of resistant 
plasmids and the production of β-lactamase are increased [59]. 
The horizontal transfer of virulence factors is also activated by SOS 
[60]. Moreover, β-lactamases are encoded by the integron-borne 
genes [61], and the gene rearrangement is mediated by the integrase 
IntI1 [61, 62]. Its expression is SOS-induced in vitro [63]. This SOS-
regulated expression plays an important role in clinical acquisition of 
antibiotic resistance [64]. Blockage antibiotic-induced activation of 
the SOS response by RecA inhibitors potentiates bactericidal activity 
of antibiotics and hinders bacterial acquisition of antibiotic resistance 
mutations and horizontal transfer of resistance [65]. Obviously, 
the biofilm resistance mediated by the resistance genotypes via 
vertical and horizontal transfers can be attributed to SOS; yet direct 
connection to biofilm defence remains to be established.

Second, the tolerance and resistance to antimicrobials are facilitated 
in biofilms. In particular, some subpopulations highly tolerant to the 
stressors in biofilms are likely to be generated and selected during 
SOS. This premise is aligned with the following findings. Treatment 
of E. coli with ciprofloxacin, a DNA-damaging and SOS-inducing 
antibiotic, caused formation of persisters [66], which are dormant 
cells highly tolerant to antibiotics and involved in recalcitrance of 
biofilm infections (Figure 3)[67, 68]. Persister formation was induced 
by some components of the SOS response after exposure to a DNA-
damaging antibiotic [69]. Isolated persisters displayed an increase in 
the levels of toxin/antitoxin (TA) transcripts, and SOS induced many 
TA genes; but knocking out a SOS-TA locus, tisAB/istR, reduced 
the level of persisters tolerant to ciprofloxacin. Thus, a SOS-induced 
toxin possibly controlled persister formation [66,70]. Third, the food-
borne pathogen Listeria monocytogenes, able to form biofilms in the 
food processing environment, generated genetic variants specifically 
induced in continuous-flow biofilms but not in static biofilms. The 
generation was dependent on radical-induced DNA damage and 
RecA-mediated repair [71]. Lastly, the starved biofilms of E. coli

displayed higher tolerance towards fluoroquinolone ofloxacin than 
their planktonic counterparts (Figure 3). The biofilm and starvation-
associated tolerance depended on biofilm age and SOS. The tolerance 
did not involve the SOS-induced toxin-antitoxin systems related to 
formation of highly tolerant persisters. These results demonstrate that 
SOS is induced in the nutrient-deprived biofilm microenvironments 
is the mechanism by which biofilm-specific tolerance to the 
fluoroquinolone ofloxacin develops (Figure 3) [72]. Altogether, SOS 
appears responsible for generation of persisters, genetic variants and 
starvation-associated tolerance in biofilms treated with antimicrobial 
agents, which in turn select for the generation outcomes so that 
evolution is likely to occur.

Biofilms as Hotspot of Evolution Driven by SOS

Biofilms, either experimental or nature-occurring, provide niches 
structurally, biochemically and genetically for bacteria to evolve as 
reviewed recently [73,74]. Bacteria, albeit unicellular, form multi-
cellular communities shielded by a polymer matrix in biofilms 
[2, 75,76]. Transportation through these enclosed communities is 
uneven, responsible for formation of gradients of both nutrients 
and toxic materials (Figure 4). This eventually leads to a spatially 
structured, heterogeneous environment inside biofilms [77,78]. Such 
an environment facilitates diversification within biofilms. Biofilms 
are therefore the hotspot of natural selection that can be fueled by 
antimicrobials and the SOS response (Figure 4) as SOS is involved in 
antibiotic resistance evolution [40,79] and in regulation of evolvability 
[80,81]. For instance, almost all bacteria produce bacteriocins, the 
antimicrobial compounds that are usually released through lysis of 
the producer strains under environmental stress [82]. For the toxic 
effect on the neighboring cells, bacteriocin production is under tight 
regulation, especially the SOS control [83]. Some of bacteriocins 
are biofilm-related. The biofilms formed by a strain of the natural 
isolate E. coli specifically produce a new pore-forming colicin R, 
which is not obviously present in the planktonic culture [84]. The 
colicin R expression is SOS-dependent since the SOS response that is 
activated within mature biofilms induces the expression. Surprisingly, 
colicin R is toxic to biofilm cells but not to planktonic cells. In the 
mixed biofilms, this biofilm toxicity provides the colicin-producing 
bacteria with a competitive advantage by outcompeting susceptible 
neighboring bacteria [84]. Additionally, P. aeruginosa produces 
pyocins, whose expression is repressed by PrtR. This negative 
regulator is cleaved under the SOS response, leading to derepression 
of pyocin genes [83]. Accordingly, hydrogen peroxide or ciprofloxacin 
known to induce the SOS response increases pyocin production [85]. 
The treatment also elevates the PrtR mRNA level due to cleavage of 
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Figure 3: Biofilm defense mechanisms via SOS. Horizontal gene transfer, 
persister and genetic variant formation, are increased by SOS. Starvation-
associated tolerance is developed by SOS.

https://doi.org/10.15344/2456-4028/2016/113


Int J Clin Med Microbiol                                                                                                                                                                                      IJCMM, an open access journal                                                                                                                                          
ISSN: 2456-4028                                                                                                                                                                                                    Volume 1. 2016. 113  

the autorepressor PrtR for its own gene [85]. Since SOS is induced 
in biofilms, pyocin activity is increased in biofilms, especially the 
slow-growing anaerobic population [86]. In mature biofilms made 
of aerobic and anaerobic communities, pyocins impose a significant 
impact on biofilm population dynamics (Figure 4).

With the stress-inducible biofilms produced under SOS and 
selection of antimicrobial agents, the biofilms may be the hotspot 
where microevolution inevitably occurs. Nevertheless, the cells in 
the biofilms seem able to differentiate and evolve into purposeful 
structures for offense and defense (Figure 4). Of the multiple-species 
biofilms in soil, the antibiotic pyocyanin-producing bacteria of one 
species coexist with the pyocyanin-sensitive bacteria of another 
[87]. How the vulnerable live with their killers inside biofilms is very 
interesting. It was found that a layer of pyocyanin resistant bacteria 
evolved between the pyocyanin-producing and pyocyanin-sensitive 
bacteria so that the susceptible were protected from their killers [87]. 
This finding indicates that biofilms are not just of genetic diversity 
but of acquiring the capacity to evolve a highly organized society 
of defense and offense (Figure 4). This social architecture was even 
emulated by an 'onion model' in which phenotypic diversification 
was produced in biofilms [88]. Elevated phenotypic variance among 
the onion-like layers increased likelihood of resistant subpopulations 
emerging to selective agents [88]. In particular, one of the selective 
agents intrinsic to biofilms is oxidative stress under which hydrogen 
peroxide triggers the SOS response (Figure 4) [34]. The biofilms 
with the onion-like architecture was, in fact, prone to the hydrogen 
peroxide-mediated oxidative stress that often induced SOS [34] and 
resistant mutability to antibiotics [89]. Since DNA replication and 
repair under SOS are error-prone and mediated somewhat by SOS-
regulated DNA motor proteins [90,91], mutability is likely to rise up. 
The mutability augmented via SOS can impair functions of the genes 
for the mismatch repair system (MRS), leading to MRS deficiency. 
This can leave numerous mismatch errors in DNA unrepaired and 

generate mutations. The MRS deficiency and the subsequent increases 
in mutation rates were found to drive the increased phenotypic 
diversification of P. aeruginosa biofilms (Figure 4) [89] and evolution 
of antibiotic resistance during development of E.coli biofilms even in 
the absence of antibiotic selection [92]. Therefore, biofilms are like 
a brewing fortress where the SOS response to external and internal 
stresses fuels mutagenesis that promotes phenotypic diversification of 
the members to form defensive zones (Figure 4). Biofilms appear to 
be a hotspot of bacterial evolution that is driven by the SOS response.
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