
Abstract

In this paper, we discuss the problem asking if Kolmogorov-Arnold representation theorem, 
which has played so important roles in solving Hilbert’s 13th problem, can be applied to the theory of 
multidimensional numerical data compression, because the way of several time nested superposition 
being used in Kolmogorov-Arnold representation theorem is analogous to the way of construting a 
multidimensional numerical table with several fewer dimensional numerical tables. Exactly speaking, 
we discuss two versions of the original Hilbert’s 13th problem, which can be derived from the replacement 
of the condition of continuous functions with the condition of the functions being differentiabie in all 
directions.
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Introduction 

From the mathematical point of view, the dimension-reducing 
numerical data compression is to the theory of data compression what 
several time nested superposition is to Hilbert’s 13th problem [1, 2, 6, 
8], If the solution to Hilbert’s 13th problem is applied to continuous 
functions of two real variables, then it can be proved that there exists 
two families of five monotone-increasing continuous functions of one 
real variable {ϕi(·); 0 ≤ i ≤ 4} and {ψi(·); 0 ≤ i ≤ 4} satisfying that, for 
any continuous function f(·, ·) of two real variables, there exists an 
appropriate continuous function gf (·) of one real variable, depending 
only on f(·, ·) and enabling f(·, ·) to be represented as the following:

This resultant formula, which is called Kolmogorov-Arnold 
representation [4, 5, 7], can derive another problem from itself, asking 
whether or not any continuous function f(·, ·) of two real variables can 
be represented as more simplified formulae than the above formula 
such as the following:

For example, it is clear that we cannot find any monotone-
increasing continuous functions ϕ0(·) and ψ0(·) satisfying that, for 
any continuous function f(·, ·), there exists an appropriate continuous 
function gf (·) of one variable, depending only on f(·, ·) and enabling 
f(·, ·) to be represented as the following:

because, for any sufficiently small positive number Δx1, there exists an 
appropriate positive number Δx2 satisfying the following:

This equality implies that, for any function f(·, ·), the following 
equalities:
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hold, and eventually, the above equalities lead us to such a contradiction 
that, for any funition f(·, ·) of two variables, the value of (x1, x2) under 
the function f(·, ·) should be equal to the value of (x1+Δx1, x2−Δx2) 
under tha same function.

Exactly speaking, When the differentiability condition is discussed 
in the teory of the functions of multivariables, this condition can be 
classifined into two more accurate differentiability ones, one of which 
is the differentiability in all directions and the other of which is the 
total differentiability. It is clear that, if any function of two variables is 
totally differentiable, then the function is necesarily differentiable in 
all directions. Actually, the converse implication does not hold. While 
the total differentiability plays so important roles in the theory of the 
functions of multivariables, the differentiability in all directions does 
the same important roles as the total differentiability in the theory of 
multidimensional numerical data compression.

In the former half of this paper and in the latter half, we discuss 
the problem asking whether Kolmogorov-Arnold representation 
theorem holds or not in case of the set of all one-time differentiable 
functions in all directions and in case of the set of all two-time 
differentiable functions in all directions, respectively, because the 
total differentiability condition, which has been usually assumed in 
the theory of the functions of multi-variables, is too strong to apply to 
the theory of multi-dimensional numerical data compuression.
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The case of functions of two variables being one-time 
differentiable in all directions 

In this section, we discuss the problem asking if a version of 
Kolmogorov-Arnold representation in case of functions of two 
variables which can be one time differentiable in all directions holds. 
This version can be formulated as the following:

Propositon 1. For any positive integer n, there does not exist n pairs 
being composed of two strictly increasing one-time differentiable 
functions of one variable {{ϕi(·), ψi(·)}; 0 ≤ i ≤ n − 1} satisfying 
that,or any function of two variables f(·, ·) which can be one-time 
differentiable in all directions, there exists a one-time differentiable 
function gf (·) of one variable enabling f(·, ·) to be represented as the 
following:

Proof. Under the assumptions stated in this proposition, we can 
obtain the following equalities:

Then, Taylor expansion assures that, for any sufficiently small 
numbers Δx1 and Δx2, the following equalities hold:

Actually, these equalities derive a contradiction that all the one 
time differentiable functions of two variables are totally differentiable. 
Therefore, we can conclude the proof. 

Remark 2. Here is an example of the function which is not totally 
differentiable but differentiable in all directions. Let f(·, ·) be the 
function which is defined as the following:

Then, the following equalities hold:

We can display the graphical image of this function as the following:
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Let θ0 be a positive number which is less than π/2 satisfying cos θ0 
= 3/5. Then, for any positive number r, we can obtain the following 
equality:

Therefore, this equality derives to the following equality:

This equality shows that the given function is not totally 
differentiable.

The case of functions of two variables being two-time differentiable 
in all directions

Throughout this section, we use the same definitions and notations 
as used in the previous section, and we discuss the problem asking if 
a version of Kolmogorov-Arnold representation in case of two-time
totally differentiable functions of two variables holds. This version can 
be formulated as the following: 

Propositon 3. For any positive integer n, there does not exist n pairs 
being composed of two strictly increasing two-time differentiable 
functions of one variable {{ϕi(·), ψi(·)}; 0 ≤ i ≤ n − 1} satisfying that,
for any totally differentiable function of two variables f(·, ·), there 
exists a two-time differentiable function of one variable enabling f(·, ·) 
to be represented as the following:
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Proof. Let f(·, ·) be the function defined as the following:

Then, we can obtain the following partial differentials:

and

These equalities imply the following equalities:

On the contrary, it follows from the assumptions used in Proposition 
3 that we can obtain the following equalities:

Actually, the above equalities conclude the following contradiction:

Remark 4. We can display the graphical image of the function used 
in Proposition 3 as the following:

Citation: Akashi S, Iwata T, Tong Y (2023) On the Possibility of Multidimensional Data Compression Based on the Hilbert's 13th Problem. Int J Comput Softw 
Eng 8: 188. doi: https://doi.org/10.15344/2456-4451/2023/188

       Page 2 of 2

Conclusions

If there exists an algorithm which enables two dimensional 
numerical data to be compressed into several one dimensional 
numerical sequences, then the algorithm would contribute to saving 
the memory area of all the computers, whether its way of reproduction 
is invertible or non-invertible. Actually, Hilbert’s 13th problem may tell 
us that it seems to be difficult to develop such a skill as dimension-
reducing numerical data compression.
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