
Abstract

In May 2021, a new transport layer protocol, QUIC, was standardized by the Internet Engineering
Task Force (IETF). Although QUIC is mainly designed to be optimized for the newWeb communication
(HTTP/3), QUIC created by the IETF is also intended for applications other than the Web. To investigate
the performance of QUIC as a transport layer, we evaluate the performance of a method implemented on
QUIC based on FTP, a file transfer protocol, and discuss the characteristics of QUIC.

Evaluation of a File Transfer Protocol with QUIC

Publication History:

Received: March 29, 2023
Accepted: April 09, 2023
Published: April 10, 2023

Keywords:

QUIC, File Transfer, Performance

Original Article Open Access

Introduction

The amount of data exchanged on the Internet today is enormous,
and attempts have been made to reduce the amount of traffic flowing
over the network and to minimize communication latency. In
November 2009, Google proposed a new communication protocol
called SPDY1, which attempts to speed up communication by adding
features such as multiple connections and pipelining to HTTP/1.1.
Since then, SPDY has gone through several iterations and is now
standardized by RFC 9113[1] under the name HTTP/2. However,
because SPDY and its successor HTTP/2 were Transmission Control
Protocol (TCP)-based protocols, they could not overcome the latency
that occurs at the TCP layer.

To solve the above issues in SPDY and HTTP/2, a transport
protocol called QUIC was proposed by Google in 2013. QUIC is
designed on top of UDP with multiple connections, connection
management functions equivalent to TCP, and packet management
functions. This overcame the latency caused by TCP, which could not
be solved by SPDY or HTTP/2. QUIC has had several iterations and
was standardized by the Internet Engineering Task Force (IETF) in
May 2021 as RFC 9000 [2]. HTTP/3, which relies on QUIC, was also
standardized as RFC 9114 [3] in June 2022.

On the other hand, there have been active attempts to make existing
application protocols available over QUIC, and in December 2020,
Internet-Draft2, an improved version of SSH that can be used on
QUIC, was proposed. In addition, Microsoft has implemented SMB
over QUIC on Windows Server 20223, and the groundwork is being
laid for further QUIC adoption.

In this study, we propose an application of QUIC to file transfers,
and aim to realize secure file transfers with lower latency than existing
methods. We also compare the performance of QUIC with existing
file transfer protocols and evaluate its performance.

QUIC

QUIC (Quick UDP Internet Connections) is a User Datagram
Protocol (UDP)[4] based transport protocol standardized by
RFC 9000 [2]. Unlike TCP, UDP does not have features such as
retransmission control, sequence control, and congestion control, all
of which are implemented in QUIC. This gives QUIC the following
advantages.

•	 Avoiding HoL Blocking at the Transport Layer Level
•	 Transport layer level encryption

*Corresponding Author: Prof. Tomofumi Matsuzawa, Department of
Information Sciences, Tokyo University of Science, Tokyo 162-8601, Japan, E-mail:
t-matsu@is.noda.tus.ac.jp

Citation: Ishikawa Y, Matsuzawa T (2023) Evaluation of a File Transfer Protocol
with QUIC. Int J Comput Softw Eng 8: 184. doi: https://doi.org/10.15344/2456-
4451/2023/184

Copyright: © 2023 Ishikawa. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

•	 Realization of multiplexed communication by streaming

When a packet loss occurs in TCP, the operating system first asks
the endpoint to retransmit the packet. Then, after the packet loss is
recovered, the data is passed to the application. At this point, even if
subsequent packets are received, the data cannot be processed until
the packet loss is recovered. This is called HoL Blocking. On the other
hand, QUIC can efficiently process data even in the case of packet loss,
because it can pass subsequent packets to the application. If application
layer data needs to be encrypted, encryption methods such as TLS
over TCP can be used. Since TLS cannot encrypt information related
to the control of the communication path, a malicious third party can
eavesdrop on the communication state. In QUIC, however, TLS is
absorbed by QUIC itself and used internally. Therefore, information
related to the control of the communication paths can also be
encrypted. QUIC can have multiple communication management
units called ”streams” on a single connection. Each stream is reliable
on a per-stream basis, and packet loss recovery and sequencing can
be performed without affecting other streams. This allows data to be
processed more efficiently than with TCP. Each stream is assigned
an integer value called a stream ID to uniquely identify the stream.
Stream IDs are numbered according to the following rules (Table 1).

Related Work

Nepomuceno et al. [5] conducted experiments to measure the time
to retrieve a Web page using HTTP for each of QUIC and TCP, and

International Journal of
Computer & Software Engineering

Yudai Ishikawa and Tomofumi Matsuzawa*

Department of Information Sciences, Tokyo University of Science, Tokyo 162-8601, Japan

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 8. 2023. 184

 Ishikawa et al., Int J Comput Softw Eng 2023, 8: 184
 https://doi.org/10.15344/2456-4451/2023/184

Start side Stream direction Lower 2 bits Example of
Stream ID

Client Bi-directional 00 0, 4, 8, 12, · · ·

Server Bi-directional 01 1, 5, 9, 13, · · ·

Client Uni-directional 10 2, 6, 10, 14, · · ·

Server Uni-directional 11 3, 7, 11, 15, · · ·
Table 1: Stream ID numbering rules.

https://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft1/
https://datatracker.ietf.org/doc/html/draft-bider-ssh-quic-09%3B%20However%2C%20the%20current%20status%20is%20%E2%80%9CExpired%20%26%20Archived%E2%80%9D
https://learn.microsoft.com/ja-jp/windows-server/storage/file-server/smb-over-quic
https://doi.org/10.15344/2456-4451/2023/184
https://doi.org/10.15344/2456-4451/2023/184
https://doi.org/10.15344/2456-4451/2023/184

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 8. 2023. 184

gave a quantitative evaluation. The experiment first uses Alexa’s page
access ranking to determine the top 100 pages to be used for the test.
Then, the tool Mahimahi is used to record HTTP (HTTPS) traffic.
Under the network traffic condition by Wang et al. research [6], we
replay the page fetches on the network and measure the time it takes
to load the page. Experiments are also conducted with and without
web browser caching enabled. The experimental results show that
RTT variations have a significant impact on QUIC performance,
while TCP performance is not significantly affected, and packet loss
rate has no significant impact on either performance. The paper also
shows that QUIC outperformed TCP in each test by less than 40%.
Furthermore, with caching enabled, TCP performed better than
QUIC. The paper attributes this to the rendering engine’s inability to
handle QUIC efficiently and the fact that the web pages used in the
experiments were not optimized for QUIC.

Proposed Method

Memory constraints

In this study, we propose to apply QUIC to secure multiple file
transfers, taking advantage of QUIC’s capability for multiplexed
connections and encrypted communications. We implement a
prototype of a file transfer protocol that runs on QUIC, based on the
FTP[7] specification.

The following procedure is used to initiate communication.

1.	 The QUIC file transfer client (hereinafter referred to as ”client”)
establishes a QUIC connection to the server. The port used is
UDP N (N is known to the client).

2.	 A bidirectional stream is opened from the client to the QUIC file
transfer server (hereinafter referred to as ”server”). This stream is
called the ”control stream”. The control stream is used to control
data communication.

The following procedure is used to initiate communication.

1.	 The client sends a comma-separated list of the names of the files
it requests to be transferred as an ASCII string to the server.

2.	 The server concatenates the names of the requested files that can
be transferred with commas and sends them to the client. If the
file does not exist, an empty string is sent.

A schematic diagram of a file request is shown in Figure 1.

In the list of received file names, files that do not exist on the server
or that are inaccessible due to permission issues are omitted from the
list, and only files that can be transferred are reported to the client.

Citation: Ishikawa Y, Matsuzawa T (2023) Evaluation of a File Transfer Protocol with QUIC. Int J Comput Softw Eng 8: 184. doi: https://doi.org/10.15344/2456-
4451/2023/184

 Page 2 of 4

The following procedure is used for file transfer, similar to the
active mode in FTP.

1.	 The server opens a bi-directional stream for the number of files
to be transferred. This stream is called a data stream. Data is
transferred using the data stream from this point on.

2.	 The client creates threads for the number of files to be received
and performs the following processing.

(a) Opens the destination file.
(b) Reads a sequence of bytes from the stream.
(c) Writes the read bytes to the file.
(d) Closes the file.
(e) Closes the data stream from the client side.

Experiments and Discussion

Both the client and server programs are implemented in the Go
programming language. The library for handling QUIC packets is
quic-go4, created by L. Clemente.

Table 2 shows the specifications of the computer used as the
experimental environment.

All experiments were conducted within the local network, and
fault elements such as packet loss and packet delivery delays were
reproduced by intentionally generating them using the tc command.
In our experiments, we measure the throughput of transferring small
files in parallel and the throughput of transferring a single large file.
For this purpose, the following two types of files are prepared.

•	 File group 1: 100 JPEG files

	 -Minimum: 177KB
	 -Maximum: 1.72MB
	 -Average: 658KB
	 -Standard Deviation (SD): 407KB

•	 File group 2: 1 ISO file

	 – Size: 1.47GB

Figure 1: Schematic of file request.

Client Server

OS Ubuntu 22.04.01 LTS Debian 11

CPU Intel Core i7-8550U Broadcom BCM2711

RAM 20GB 8GB
Table 2: Specifications of the computer.

https://doi.org/10.15344/2456-4451/2023/184
https://doi.org/10.15344/2456-4451/2023/184
https://github.com/quic-go/quic-go

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 8. 2023. 184

We perform packet capture using Wireshark and measure the
time required to transfer the above file groups 1 and 2 with the
implementation of the proposed method according to the conditions
in Table 3. 5 The same conditions are also used in the SCP6 experiment
for comparison.

Figure 2 shows the time required to transfer file group 1 when the
fault elements are set according to Table 3.

On the horizontal axis, packet loss rate is expressed in %, and packet
delay is expressed in ms.

When a fault factor is set, the implementation of the proposed
method does not show a significant effect on the transfer time. On
the other hand, the transfer time increases with the size of the fault
in SCP.

5The time from the start of the handshake to the disconnection of communication is
defined as the time required for the transfer.
6An application protocol for file transfers using SSH (Secure Shell), an encrypted remote
login system.

Citation: Ishikawa Y, Matsuzawa T (2023) Evaluation of a File Transfer Protocol with QUIC. Int J Comput Softw Eng 8: 184. doi: https://doi.org/10.15344/2456-
4451/2023/184

 Page 3 of 4

The transfer time of the proposed method using QUIC increases
linearly with increasing packet loss rate in the order of about 0.1
second. On the other hand, in the comparison experiment with
SCP, the transfer time increases with increasing packet loss rate by
an order of magnitude larger than the first power of the packet loss
rate. In addition, the transfer time of the proposed method is almost
constant even when the delay increases, while the transfer time of
SCP increases linearly with a unit of about 1 second. Based on the
above results, it can be said that the proposed method improves the
throughput of file group 1.

Experimental results show that the proposed method performs
better than the existing methods in environments where packet
loss and packet delivery delays occur. In particular, the difference in
transfer time between the proposed and existing methods becomes
larger as the network disturbance factor increases. This is due to the
fact that the overhead caused by HoL blocking exceeds the overhead
caused by asynchronous processing as the packet loss rate increases
and the number of seconds of delay in packet delivery increases.
Therefore, the proposed method is superior for the case where many
files are transferred simultaneously in an environment with faulty
elements.

When there is no faulty element, the file transfer time using the
proposed method is slightly longer. This is due to the processing
time of the computer. The proposed method processes multiple
streams asynchronously when downloading multiple files, which
increases the load on the computer compared to existing methods.
In our experiments, this asynchronous processing affected the results.
However, since it is rare for real networks to be free of such obstacles,
this performance difference can be ignored as a practical matter.

In light of the above, the proposed method is expected to perform
well when transferring a large number of files in a real network
environment.

Figure 3 shows the time required for the transfer of file group 2
when the fault elements are set according to Table 3.

Fault
Elements
File group

File
group

QUIC - 1

QUIC Delay 5ms 2

QUIC Delay 10ms 1

QUIC Delay 15ms 2

QUIC Delay 20ms 1

QUIC Delay 25ms 2

QUIC Loss ratio 1% 1

QUIC Loss ratio 2% 2

QUIC Loss ratio 3% 1

QUIC Loss ratio 4% 2

QUIC Loss ratio 5% 1

Fault
Elements
File group

File
group

SCP - 1

SCP Delay 5ms 2

SCP Delay 10ms 1

SCP Delay 15ms 2

SCP Delay 20ms 1

SCP Delay 25ms 2

SCP Loss ratio 1% 1

SCP Loss ratio 2% 2

SCP Loss ratio 3% 1

SCP Loss ratio 4% 2

SCP Loss ratio 5% 1

Table 3: Experimental conditions.

Figure 2: Fault element and transfer time for file group 1.

https://doi.org/10.15344/2456-4451/2023/184
https://doi.org/10.15344/2456-4451/2023/184

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 8. 2023. 184

In both cases, the transfer time of the proposed method is about 30
seconds longer than that of SCP. For both the proposed method and
SCP, the transmission time increases as the packet loss rate increases.
On the other hand, the transfer time is almost constant for both the
proposed method and SCP. In all conditions, SCP was 30 seconds
faster for file group 2, and the proposed method did not improve the
throughput. From the experimental results, it can be seen that the
proposed method requires 30 seconds more transfer time regardless
of the presence or absence of error elements. In this experiment, New
Reno was used as the congestion control algorithm, and the size of the
send/receive buffer was set to 21,299,200 bytes (− 20.3 MiB). So, it is
clear that these factors are irrelevant to the results.

According to the packet capture results, 924,454 SSH packets were
sent and received. On the other hand, 1,340,576 QUIC packets were
sent and received, which is about 1.5 times the number of SSH packets.
In this experiment, it is assumed that the time required to encrypt
and decrypt a large number of QUIC packets has greatly affected the
transfer time.

Based on the above, the proposed method is not suitable for
transferring large files, at least in our implementation.

Conclusions

In this study, we proposed a fast and highly secure file transfer
protocol that exploits the low latency and multiple connectivity of
QUIC for file transfers. In this study, we implemented a prototype file
transfer protocol running on QUIC using existing libraries.

Experiments were conducted to measure the throughput of small
files transferred in parallel and the throughput of large files transferred
in one shot. Similar experiments were also performed on SCP, an
existing method, to compare the throughput of the two methods. The
experimental results showed the superiority of the proposed method
over the existing method in the former case, but not in the latter case.

While many studies have discussed the superiority of QUIC in
the context of HTTP, this study evaluated the performance of QUIC

Citation: Ishikawa Y, Matsuzawa T (2023) Evaluation of a File Transfer Protocol with QUIC. Int J Comput Softw Eng 8: 184. doi: https://doi.org/10.15344/2456-
4451/2023/184

 Page 4 of 4

outside the context of HTTP. This study is significant in the recent
trend of various application protocols supporting QUIC.

Competing Interests

The author declare that he has no competing interests.

References

1.	 Thomson M, Benfield C (2022) “HTTP/2”, RFC 9113.

2.	 Iyengar J, Thomson M (2021) QUIC: A UDP-Based Multiplexed and Secure
Transport, RFC 9000.

3.	 Bishop M (2022) “HTTP/3”, RFC 9114.

4.	 Postel J (1980) User Datagram Protocol, RFC 768.

5.	 Nepomuceno K, de Oliveira IN, Aschoff RR, Bezerra D, Ito MS, et al. (2018)
“QUIC and TCP: A Performance Evaluation”. IEEE Symposium on Computers
and Communications (ISCC), pp. 00045-00051.

6.	 Wang XS, Balasubramanian A, Krishnamurthy A, Wetherall D (2014) How
speedy is spdy?”, The 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

7.	 Postel J, Reynolds J (1985) File Transfer Protocol (FTP), RFC 959.

Figure 3: Fault element and transfer time for file group 2.

~

https://doi.org/10.15344/2456-4451/2023/184
https://doi.org/10.15344/2456-4451/2023/184
https://datatracker.ietf.org/doc/rfc9000/
https://datatracker.ietf.org/doc/rfc9000/
https://ieeexplore.ieee.org/document/8538687
https://ieeexplore.ieee.org/document/8538687
https://ieeexplore.ieee.org/document/8538687
https://www.usenix.org/conference/nsdi14/technical-sessions/wang
https://www.usenix.org/conference/nsdi14/technical-sessions/wang
https://www.usenix.org/conference/nsdi14/technical-sessions/wang

