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Abstract

In this paper, a generalized fractional Taylor's formula and Cauchy's formula of the kind

fix, y) ZD “f(X45Y0)
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where 0 <a < 1, is established. Such expression is precisely the classical Taylor's formula and Cauchy's
formula in the particular case a = 1. In addition, detailed expressions for R, (x, y)and T*(x,y)

involving the sequential Caputo fractional derivative are also given.
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Introduction

The ordinary Taylor's formula has been generalized by many
authors. Riemann [1] had already written a formal version of the
generalized Taylor's series:

0 hm+r

flx+hy=3]

2 Fmarap )@ A

where J™ is the Riemann-Liouville fractional integral of order
m+r. Afterwards, Watanabe [2] obtained the following relation:

f(x)= Z (= x‘}? 1)( " f) () + R, (12)

with m <q, a < X, <X, and

R = (1" DL )04 ——— ( i) [ =ty ey

where D*" is the Riemann-Liouville fractional derivative of order
a+n.

On the other hand, a variant of the generalized Taylor's series was
given by Dzherbashyan and Nersesyan [3]. For f having all of the
required continuous derivatives, they obtamed

(D)0
( ) * +F(l+ocm)‘l°(x_t)’

f®=3 (D f )y (13)

i T(l+a,)

where 0 <x,0,0,...,
suchthato <o, —a, , <Lk=1,..,

a,, is an increasing sequence of real numbers
m and D) f = [} ) pirei £

Under certain conditions for f and a € [0, 1], Trujillo et al. [4]
introduce the following generalized Taylor's formula:
)(/H)(x 1

f()z( a)

+R (x,a) (1.4)

(D" f)(E) N\
R,(x.a )_r(( +1)a+1)( D™ .a

c; =T(a)(x—a)™* D/ f1(a+),j=0,1,...,n

<&<Lx,

and the sequential fractional Riemann-Liouville derivative is denoted
by D" = D*. D% -...- D (n—times)

Recently, Zaid M. Odibat, Nabil T. Shawagfeh [5] obtain a new
generahzed Taylor's formula of this kind

e eyt (D /)(&)
f(x)_;or(jaﬂ) DX Do)

with a< £< x; where D* is the sequential fractional Caputo derivative.

x—a)™  (1.5)

To the best of our knowledge, the recent developments on Fractional
Taylor's Formula and Fractional Cauchy’ Mean Value Theorem
with Multivariate is not well reported. G. Jumarie [6] had given the
following Multivariate fractional Taylor Series

f+hy+D)=E, (kD! )E, (I°D) f(x,y) =

E,(1°DF)E, (h*DE) f(x, ) = E [(th +ID)) ] f(ny) (16)
where E (x) denotes the Mittage-Leer function dened by the
expression [7-15] .
> X
E(x)=) ———
<) kzz(; I'(ok+1)
But I am afraid Eq.(1.6) is incorrect, since its proof is based on the
following equality
E[(u+v)*]=E u)E, (0*) (1.7)

which seems incorrect unless a = 1.

In order to establish fractional Taylor's formula and fractional
Cauchy' Mean value theorem, the main diculty seems that how to give
the suitable denition of fractional integral and derivative of function
with multivariate.
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In this paper, we will give a new denition of fractional integral and
derivative of function with multivariate, derive fractional Taylor's
formula with multivariate (a) with the Lagrange remainder term; (b)
with integral remainder term. and derive fractional Cauchy formula
with multivariate (a) with the Lagrange remainder term; (b)with
integral remainder term.

As far as we are aware, this denition and results have not been
published elsewhere previously.

Denitions and Properties

For the concept of fractional derivative we will adopt Caputo's
denition which is a modication of the Riemann-Liouville denition
and has the advantage of dealing properly with initial value problems
in which the initial conditions are given in terms of the eld variables
and their integer order which in the case in most physical processes.
More detailed information on fractional calculus may be found in
these books [7-14].

Definition

A function f(x)(x > 0) is said to be in the space C_(a € R) if it can be
written as f(x) = x*f (x) for p > where f,(x) is continuous in (0,e0) and
it is said to be in the space if f™ € Ca, m EN.

Definition

141 Let f(x) € C (a, o), the Riemann-Liouville integral operator of
order a > 0 is dened as

(D% )(x) = o )J' (x—0*" f(H)dt,x > a
Definition

71 Let f(x) € C((xm) the Caputo fractional derivative of f(x) of order
o> 0 is dened as (m
S

(D210 = (D57 )00 = oo [

a (x _ t)cx+1—m

form-1<a<mmEN,x>a

Definition

[7-141 L et D« be Riemann-Liouville integral operator of order a > 0,
be Caputo fractional derivative operator of order a >0, 0 <a < 1,
DEf(x)€ Cla,b) then

[D,*D; f1(x) = f(x)= f(a)
In order to derive fractional Taylor's formula and Cauchy formula

of a function with multivariate, we will rst give the following integrate
denition of a function f(x; y), (x; y) € D, where D is a convex domain.

Definition
Let(xo’yo)a(xay)eDan:x_xo’Ay:y_yoaoss <1 define

(D™ ) + A%, yy +5Ay) = [ f(x, + 1A%, y, +1AV)de (2.1)

when s = 1, define

(D))= [ f g +thw, 3, +i8)de (22)

Proposition

Letk €N (X, ), (%, ) € D,Ax=x—x,,Ay=y—,,0<5<1
then
(D" f)(x0+SAx Yo tsAy)=

j( 1) f(x, +1AX, y, +1AY)dE (23)

(k=1)to
Proof By Denition we have
(D7 )%, +5A%, v, +sAy) = [ D7 f(x, + 1A, y, +1Ay)dt
= J: dtJ‘(: S (x, +ulx, y, +uly)du
= J'OY duj: S (xy +ulx, y, +uly)dt = L:(s —u) f(x, +ulx, y, +uly)du
By induction, it is not hard to prove that

(D™ f)(x, +5AX, y, +5Ay) = [} (s=00f (o + 1w,y + 1y

(=Dt

Now we can dene fractional integral of f(x; y) of order
Definition

Let7 € R, (x5, ), (X, ¥) € D,Ax =x—X,,Ay =y —,,0< s <1
define
(Diyf)(xo +5Ax, y, +sAy)

T )j (5=t~ f(x, + 1A, y, +tAY)dE  (2.4)

when s = 1, define

(D7 )y == [ A=1) fx, + 1A,y +18p)dE (2.5)

1
L(y)-°
For convenience, Let us set

o) = f(x, +tAx, y, +tAy) then we have
Proposition
Let(Xy, ¥,), (%, ¥) € D,Ax = x —x,, Ay = y— ,,0 <5 <1 then
(D’yf )(x, +SAX, y, +SAY)

=T L[ sty ey, 18)dE= (D7 0)s) (26)

and
(D7 f)x,3)= G )I(l 07 f(x, +1Ax, y, +tAy)dt = (D7 p)(1) (2.7

By Proposition it is easy to see that
Proposition

Let a, € R*then
DD f(x, +sAx, y, +sAy) = D™D f(x, + sAx, y, + sAy)

and
DD f(x,y)=D"“"P f(x,y)

Definition

If n €N, define
D" f(x, +sAx, y, +sAy)

= (Axé +Ay g)”f(xo +sAx, y, +sAy) (2.8)
Ox ox
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D"f(x,y>=<Ax§+Ay3>"f(x,y> 2.9)
X Oox

Definition

Let p> 0, and let n be the smallest integer exceeding u , we define the
fractional derivative of f of order p as following

(D" 1) (% +5Ax, y, +5Ay) = (D*" D" f)(x, +5Ax, y, +sAy) (2.10)
and

(D)%) =(D""D" f)(x,p) (2.11)

From Denition it is easy to know

Proposition

Let @(s) = f'(x, + sAx, y, + sAy) then
D" f(x, +sAx, y, +sAy) = "M (s) (2.12)
and D" f(x,y) =" (1) (2.13)

Proposition

Let p € R* then
(D" f)(x, +sAx, y, +sAy) = (D

and (D"f)(xy)=(Do)(1) (2.15)

“p)(s) (2.14)

Generalized Taylor's mean value theorem and generalized
Cauchy's mean value theorem with one Variable

In this section, we will give fractional Taylor's mean value theorem
and Cauchy's mean value theorem involving the sequential Caputo
fractional derivative with one variable.Let us begin with some basic
fractional mean value theorems.

Theorem

(Fractional Lagrange's mean value theorem) Suppose that f(x) €
Cla,b] and D! f(x) € Cla,b], for 0<a<l, then we have

1 o _ o
Sb)-f(a)= ml)a J(E)b-a)” (3.1)
with a<&<b
Proof

In view of Proposition we have

f(b)—f(a)=[D;°‘D:‘f](b)—ﬁ ['6-n" [Dsr]ar

=[D f](é‘)l_( ) [(&-1) ar =D

From above Theorem It is easy to obtain

(b-a)*
I'(a+1)

Corollary

(Fractional Rolle's mean value theorem) Suppose that f(x) € C[a,b],
D¢ f(x), D*g(x) € C[a,b] for 0<a<1, and f(a)=f(b), then there exists
€ € (a,b) such that

D/ f(&)=0 (3.2)

Now we can derive fractional Cauchy's mean value theorem with
one variable.

Theorem

(Fractional Cauchy's mean value theorem) Suppose that f(x),g(x)
€Clabland D} f(x), D! g(x) € Cla,b], for 0<a<l, then we have

SO)=f@) _DfE) 5y
gb)-gla) D;g($)
with a<&<b
Proof
Set F(x) = [f(b)-f(a)][g(x)-g(a)]-[f(x)-f(a)][g(b)-g(a)], then F(a)

=F(B) =0 in view of fractional Rolle's mean value Corollary so that
there exists & € (a, b), such that

DIF(£)=0
Therefore, we have

/()= f(@]D;g(5) =Dy f(£)[g(b)-g(a)]=0

Theorem is completed.
Theorem

(Fractional Taylor's mean value theorem) Suppose that
D,*f(x) € Cla,b] fork =0, 1,..., m + 1, where 0 <a< 1, then we have

D(m+l)a
- Z( )() a)ka+(a 1)@

_ 1\(mtha
“ T(ko+ C((m+1)a+1) 6= G4

witha<§<b, whereD;mL /fis sequential Caputo fractional derivative.

Theorem have also been established in [5], here we give another
proof by the use of Fractional Cauchy's Mean Value Theorem.

Proof
By the use of fractional Cauchy's mean theorem we can obtain
( )( ) ko
f(b)= Z Tlhot —a)
(b a)(m+1)on -
(D /) (@ Je-are (o (DSf)@ , .
D;)(¢&)- z Ikt +1) S—ay” (D)&)- Z kot 1) (§-a)
(m+1)a(§ ay™ - (m+1)a no(&, —a)" M
mo. ( ”‘lf)(a) ko
D —
( a f)(ém) ( )(fm ) ~ (Dimi»l)u)(gmﬂ)

(m+)o-ma...-20(&, —a)* - (m+1a-mo....-o

So that we have

(D ’“‘f)( Db

(m+1)o
f( ) z r(k a)k(x +M(b_a)(m+l)a

T((m+1)o+1)

The proof of Theorem is completed.
Theorem

(Generalized Cauchy's mean value theorem) Suppose that
D} f(x), D¥*g(x) € Cla,b¥or k = 0,1, ...m + 1; where 0<a< 1, then
we have
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(D)@ i
S @)= Z Clka o) 8T (D))
(pre)a, “orree Y
g(b) Z -

Proof

By the use of fractional Cauchy's mean theorem we have
(Dkf) (@
Sf(b)—- Zﬁ
( )( ) ko
g(b)- /Z Fharn &%
(D f) (@)
[(ka+1)

(D7 g)é)— z (F(kl(l))

(b a)ka

(D SNe) - Z & -a)*

& -a)*

and

(D))~ Z(r(kf)fn)

()&~ i(r(“k‘g)())(é -y

(Dkf) (@

& -a)

(DZ“f S Z -y

_ (ko +1)

(Dg)&) - Z(F(k)())(é—a)k"

DI DEN@ (e
T(moct 1)

mo ( Ha SNAYT) g)(a) ko
(D 8)¢&,)— F(ma+1) &, —a)

The proof of Theorem 3.5 is completed.

D" e e

(D) E)

Remark

1. Theorem is essentially new.

X—a (m+1)a
2 serg(n=T9TT

, then theorem reduces to previous
theorem [(m+1)a+1)

Generalized Taylor's formula and Cauchy's formula with
multivariate

In this section, we discuss Generalized Taylor's formula and
Cauchy's formula with multivariate. First, We discuss Generalized
Taylor's formula and Cauchy's formula with the Lagrange remainder
term.

Theorem

(Generalized Taylor's formula with multivariate) Let D be a convex
domain, (x R yo), (x,y) €D, then

D f (%, 20) D" f(&,n)
(x.)= kz Tka+1)  T((m+Do+1)

(4.1)

where
E=x,+0(x—x,)=x,+0Ax, 7=y, +OAy,(0< 0 <]1)
and D" f(x,,,), D" f(&,n) are dened in above.

Proof

In previous Theorem replacing function fby ¢, and seta=0,b =1,
then we have

w(kl‘x) (0) w((}ﬁ—l)a) (0)
v()= Z “T(ka+1)  T((n+Dot1)

On the other hand, set ¢(t) = f(x, +t(x-x)), y, +t(y-y,)), and by
Proposition we have

()= 1 (5, ),0"" (0)=D" f (x, 3,). 0" (@)= D" f(&,m)  (4.3)

Substituting above equation into first equation, then Theorem is
completed.

,(0<0<1) (4.2)

Theorem

(Generalized Cauchy's formula with multivariate) Let D be a convex
domain, (x,, y,) (x; y) € D, then

(x y) ZD uf(xo’YO

Lt o,
gxovyo g(g,n
g(x.y)= kz T'(ka+1)

where & =X, +0(x —x,) = x, +0Ax,n =y, +0Ay,(0< 0 <1)
Proof

replacing function f by ¢, g by y and set a = 0, b = 1, then we get

(ko)

~T(ko.+1 (mthe (g
((kg+ ) (p(mma( ) 5)
~T(ka.+1)

On the other hand, set

P() = f(x, +1(x =), Yo + 1Y = ¥p))s
y(t) = g(x, +t(x—x,),y, +t(y = ¥,)) by the Proposition we have

o(1)= f(x,1),0"(0)= D" f (x), y,), 0" (@) = D" f(£,m)  (4.6)
y()= £ ()" 0)= D" f(x, ).y " (@) = D" (&) (A7)

Substituting the above two equation from the previous equation
Theorem is completed.

Now, we set P(1) = f(x, +1Ax,,x, +1Ax,,...,x, +1Ax,)
where Ax, = y, —x,,Ax, =y, —%,,...,Ax, =y, —

We can obtain the following Proposition by a process analogous to
previous Proposition

Proposition

Let (x....xn); (Y,5..., ¥,) €D, where D C R"is a convex domain, then

(D" )(x, +sAx,, x, + SAX,, ..., x, +sAx,) = (D" p)(s) (4.8)
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(D Y315 Y25003,) = (D)D) (4.9)

Theorem

(Generalized Taylor's formula with multivariate) Let Suppose that

ko
D f(x,%,,--,X,) are continuous in D, fork =0, 1,...,m + 1; where
0<a< 1, then we have

N Dkaf(xlaxzwwxn) 4 D<m+l)uf(§1a§za-~~a§n)

S Vyrees Vo) = 4.10
G5 Va5es,) ; T(ko+1) T(m+Do+1) +10
where & =X, +0(y, —x,),i=1,2,..,n,0< 0 <1

Theorem

(Generalized Cauchy's formula with multivariate) Let Suppose that
D! f(x,,%,,...,x,) » D g(x,,%,,...,x,) are continuous in D, for k =
0, 1,....m+ 1; where 0<a<1, then we have

2 DM (%, %000 X,)

TGPy =2

=0 [(ka+1) _ D(mmuf(éwgzv--’étn)

D88, E,)

4.11
Dkug(xl,xz’---,xn) ( :

g(yl,yz,---,yn)—; ToeD

where § =x, +6 (y,-x); i = L, 2,..,0.

Next Let us discuss Generalized Cauchy's formula and Cauchy's
formula with integral remainder term.

Lemma

Suppose that @"(1) e CT0,1] for k =0,1,..m+1 where 0 <a
<1, then we have

9"“(0) o 1 _
o= ZF(koHl) T((m+1)o )I( D

when t = 1, then

& 9(0) o, 1
o= zr(/m+1) T((m+1)a)

(m+1)o~1

" (TYT  (4.12)

Do~

Jla-n”

1
" (YT (4.13)
Proof

By Laplace Transform, we have

SR SRR RPN G, P e
L%anwLazd @ (T)dT} (s)

— L{D—(m+l)(xD(m+l)(x¢(t)}(S)
_ S—(m+1)aL{D(m+l)a¢(t)}(S)

=5 ) <3 O))
_ﬂ)ZW@

By inverse Laplace Transform, we obtain
_ T)(»Hl)m—] w(nw]) (T)dT — (P(f) _

;J[ (f S wkcx (0) tkot
L((m+Da)° T (ko+1)
and

o320 L

)(m+l)u 1 (mH)(T)dT
o (ka+1) T(m+Da)

Lemma is completed.

The following Theorem can be directly obtained from Lemma and
Proposition.

Theorem

(Generalized Taylor's formula with multivariate) Suppose that
Di‘“f(xl’xz’...’xn) are continuous in D, for k = 0, 1,...,m + 1, where
0 <a< 1, then we have

Dka (x15x25 ’x)
TG arery,) = kZ: Tkasl

(m+1)a-1
(m+]

WJ( 1) L +s(r—x),x,
+5(¥y = Xy)yeen X, +5(y, —x,))ds  (4.14)

Theorem

(Generalized Cauchy's formula with multivariate) Let Suppose that
D f(x,,x,,....x,) »D*g(x,,x,,...,x,) are continuous in D, for
k=05 1,...m+ 1, where 0 <a<1, then we have

Dkaf(xl’XZ’ xn
SOuyaseny,)— kz(; T(kou+1)

m

Dkag(xl,xza'“’xn)
g Ysee V) kZ? [(ko+1)

m+1)a—1
D(mﬂ)af(xl +5(y, = %)%,
—x,))ds

1 (
J,0=0
_ +5(¥) = X))seers
1 (m+D)a-1
La—ﬂ

D(Wl)ag(x1 +5( —x), X,
+5(¥y = Xy), e

~x,))ds
Remark

x, +s(y,

(4.15)

x, +s(y,

Last, Let us consider some special cases

Whenn =0, 0 < a< 1, then we get

D" S(x,%,,.0x,
fn)= § F(ka+1)

|
r((m+1)ooI -

Now we have

(D f)(y)—m'f =07 f(xq +t(y—x))dt, (veR)

it is easy to verify that

WTﬂU)OfM)FgJ( =1y (e =(y-x) "D 10)

-1
D("””“‘f(x1 +5(y,—x))dt (4.16)

where [D;IV f ] (») is Riemann-Liouville integral.

Similarily we can obtain

D" ) = =x)"[D; 1) (4.17)
where |:D;1 “f :' (¥) is Caputo fractional derivative.

Therefore, combining formula (4.16) with (4.17), we get
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SO

1
T((m+1)o)

which is the same as previous one

(y1_x1 Dk
ZF(k [ 1)+

|| QL= D (Tyar (4.18)

When n = 0; = 1, the generalized Taylor's formula reduced to the
classical Taylor's formula

1) Z(yl " )+

Further, Let m = 0, it reduced to the well-known Newton-Leibnitz's
fundamental theorem of calculus f(y,)= f(x,)+ J'y' £(dT

,jj‘ (0 =T)" S " (T)dT

Whenn > 1, a = 1 we have

nlp 9 9
FO1Ypsend,) =Y — o byl

F 02X )+
= Ok' a)(fl ax2 ) f( 172 n)

n

1
*'Jol(l—t)mD'"”f(x1 +1AX, X, + 1A, X +1AY, )t
m!

which is the classical Taylor's formula with multivariate.

Let a =1, m = 0 in above Theorem then we can get

JAURE AL G AL
J](Ax1£+Ax2i+...+Axn
00X, o,

i) (x +tAx,x, +tAx,,...,x +tAx )dt
ax 1 ™2 2 n n
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