
Abstract

In this paper, we focus on nonoscillatory solutions of two (2D) and three (3D) dimensional time scale 
systems and discuss nonexistence of such solutions.
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Introduction

The motivation of studying dynamic equations on time scales is to 
unify continuous and discrete analysis and harmonize them in one 
comprehensive theory and eliminate obscurity from both. A time 
scale T is an arbitrary nonempty closed subset of the real numbers 
R. The most well known examples for time scales are R (leading to 
dierential equations,  [10]), Z (leading to dierence equations, [11]), and

                                         (leading to q-dierence equations,  [9]). In 
1988, the theory of time scales was initiated by Stefan Hilger in his 
Ph.D. thesis, [8]. Since the calculus of time scales has been recently 
developed, we give a brief introduction to time scales calculus. 
Nevertheless, an excellent introduction can be found in [5, 6] by 
Bohner and Peterson.

There are two jump operators: For t ε T, the forward jump operator  
σ: T → T is given by σ(t):=inf {s ε T: s>T} for all t ε  T while the 
backward jump operator ρ: T→T is dened by ρ(t):= sup{s ε T : s < t} for 
all t ε T. Finally, the graininess function: μ: T → [0,∞) is given by μ(t):= 
σ(t) - t for all t ε T.

We dene inf 0 = sup T. There are four types of points in T. If σ(t)>t, 
hen t is called right - scattered, while if ρ(t)<t, t is called left - scattered. 
If t is right and left - scattered at the same time, then we say that t is 
isolated. If t < supT and σ(t)=t, then t is called right - dense, while if t 
> inf T and ρ(t)=t, we say t is left - dense. Also, if t is right and left - 
dense at the same time, then we say that t is dense.

If supT < ∞, then TK=T\(ρ(sup T), sup T], and TK=T if sup 
T=∞. Suppose that f : T→R is a function. Then fσ: T→R is dened by 
fσ(t)=f(σ(t)) for all t ε T. For any ε > 0, if there exists a δ > 0 such that

                                                               for all                                          ,

then f is called delta (or Hilger) dierentiable on Tk and f∆ is called 
delta derivative of f. Let f : T→R be a function with t ε TK. If f is 
dierentiable at t, f is continuous at t. If f is continuous at t and t is 
right-scattered, then f is dierentiable at t and

If t is right dense, then f is dierentiable at t if
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exists as a fnite number. If f is dierentiable at t, then fσ(t)=f(t)+μ(t)f∆(t) 
holds for all type of points in T. Let f, g : T→R be dierentiable at t ε TK. 
Then we have the product and quotient rules for derivatives as follows:

1.	
2.	 If g(t)g(σ(t))≠0, then     is dierentaible at t with

f : T→R is called right dense continuous (rd-continuous), denoted 
by Crd,Crd(T); or Crd(T,R), if it is continuous at right dense points in T 
and its left sided limits exist as a nite number at left dense points in T. 
Throughout we denote continuous functions by C. Also, the Cauchy 
integral is dened by

Every rd-continuous function has an antiderivative. Moreover, F 
given by

is an antiderivative of f.

Higher Dimensional Time Scale Systems

The study of higher dimensional time scale systems in nature and 
society has been motivated by their applications such as population 
dynamics, genomic and neuron dynamics and epidemiology in 
biological sciences,  [1,16] and in astrophysics, gas dynamics and fuid 
mechanics, relativistic mechanics, nuclear physics, and chemically 
reacting systems, [4,7,12,17].
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Recently, nonoscillatory solutions of 2D and 3D time scale systems 
have been considered in [13-15] and [2,3], respectively. One of 
our main goals in these articles is to nd integral conditions which 
eliminate nonoscillatory solutions of given systems. Depending on 
which dimension we deal with one naturally attempt to nd single, 
double or triple integral conditions. A question we have here is 
whether we can eliminate all types of nonoscillatory solutions or not. 
In this contribution, we only satisfy single integral conditions for 
both time scale systems and other integral conditions can be found 
in references above. Our approach is based on the sign of components 
of nonoscillatory solutions of systems and we assume without loss of 
generality that the rst component of such solutions is always positive.

We rst start with the following 2D time scale system

                                                                                                     (2.1)

where a, b ε Crd ([t0,∞)T, R+) and f, g ε C(R,R) satisfying uf(u) > 0, 
ug(u) > 0 for u≠0 and

                                                                                                     (2.2)

where F and G are positive constants and Φα, and Φβ are old power 
functions, i.e., Φp(u)=|u|psgn u, p > 0 and p ε {α, β}.

Throughout this article, we assume that T is unbounded above. We 
call (x, y) a proper solution if it is dened on [t0, ∞)T and sup{|x(s)|, |y(s)| 
: s ε [t, ∞)T} > 0 for t ≥t0. By t ≥t1, we mean t ε [t1, ∞)T := [t1, ∞)   T. A 
solution (x, y) of (2.1) is said to be nonoscillatory if the component 
functions x and y are both nonoscillatory, i.e., either eventually 
positive or eventually negative. Otherwise, it is said to be oscillatory. 
Denitions above can be modied for higher dimensional time scale 
systems.

Assume that (x, y) is a nonoscillatory solution of system (2.1) such 
that x oscillates but y is eventually positive. Then the rst equation 
of system (2.1) yields x∆(t)=a(t)f(y(t))>0 eventually one sign for all 
large t ≥ t0, a contradiction. The case where y is eventually negative 
is similar. Therefore, we have that the component functions x and 
y are themselves nonoscillatory. In other words, any nonoscillatory 
solution (x, y) of system (2.1) is one of the following types:

                              Type (a): sgn x(t) = sgn y(t);
                              Type (b): sgn x(t) ≠ sgn y(t).

For convenience, let us set

                                                                                                      (2.3)

Theorem

Any nonoscillatory solution of system (2.1) cannot be of

1.	 Type (a) if A(t0) < 1 and B(t0) = 1.
2.	 Type (b) if A(t0) = 1 and B(t0) < 1.

Secondly, let's consider 3D time scale systems of the form

                                                                                                  (2.4)

where a, b, c ε Crd([t0,∞)T,R+ amd f, g, h ε C(R, R) satisfying uf(u) > 
0, ug(u) > 0, and uh(u) > 0 for u ≠ 0 and

                                                                                                   (2.5)

where F, G, and H are positive constants and Φp(u)=|u|psgn u, p>0 
and p ε {α, β, γ}. By a similar argument, we can conclude that any 
nonoscillatory solution (x, y, z) of (2.4) is one of following types:

                             Type (a): sgn x(t) = sgn y(t) = sgn z(t),
                             Type (b): sgn x(t) ≠ sgn y(t) = sgn z(t),
                             Type (c): sgn x(t) = sgn y(t) ≠ sgn z(t),
                             Type (d): sgn x(t) = sgn z(t) ≠ sgn y(t). 

For convenience let's set	

Lemma

Any nonoscillatory solution of system (2.4) can not be of

9.	 Type (a) if C(t0) = 1.
10.	 Type (c) if A(t0) = 1;
11.	 Type (d) if B(t0) = 1.

Not only from Lemma 2.2 but also from other results in above 
references one can observe that Type (b) solution of system (2.1) is not 
eliminated. In fact, it is worth to emphasize that components of Type 
(b) solutions have nite limits. Note that when we deal with 2D time 
scale systems such type does not occur. Here is the question comes 
to our mind: Is it related with dimensions of given systems? When 
we focus on four dimensional (4D) time scale systems, we realize 
that nonoscillatory solutions whose components have nite limits do 
not occur either. Moreover, we have already known that all types of 
nonoscillatory solutions of 4D time scale systems can be eliminated 
by some integral conditions. Therefore, we would like to emphasize 
that this is a matter of considering odd or even dimensional time scale 
systems.
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