
Abstract

We consider controllability problem for linear dynamical systems with interval coefficients of 
corresponding matrices. We introduce concepts of universal and subuniversal controls, obtain methods 
of their construction and get their interesting properties.
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Introduction

The classical theory of controllability was introduced and 
developed in 1960-s by R. Kalman, L.S.Pontryagin, V.G.Boltyanski, 
R.V.Gamkrelidze, N.N.Krasovsky [1-4, 9]. Controllability problem is 
regarded as one of the basic for control theory and in general it means 
the possibility for given dynamical system to move from given position 
to another one for fixed time interval under appropriate control in 
corresponding vector space. We differ two types of controllability: 
point-to-point and total controllability. In this paper, our interest is 
focused on point-to-point controllability. Following [1, 3], point-to-
point controllability is defined as

Definition

Let x0, x1 be two points in Rn and t0, t1 be two moments of time. 
Linear system  

is said to be point-to-point controllable from position (x0,t0) to 
position (x1,t1) if there is a process (x(t),u(t)) such that
                             x(t0)=x0 and x(t1)=x1 

Traditionally x(t) Є Rn is called a state (or phase) variable and u(t) Є 
U     Rr is called a control variable or simply – control, A(t) and B(t) are 
n × n and n × r matrices accordingly. Here t Є R is a time parameter.

Solution of point-to-point controllability problem in case U = Rr 
has been obtained by Kalman [2, 4]. The following theorem gives the 
criterion of controllability.

Theorem

(Kalman). System (1) is controllable from position (x0,t0) to position 
(x1,t1) if and only if linear system (2) is consistent

Here z Є Rn is vector of unknowns,
is an n×n matrix, F(t,τ) is a fundamental matrix of the system
                                                      ,
satisfying initial condition
        x(τ)=ei, where ei =(0...010...0)T is i-th unit vector (i=1,2,...,n). We 
understand integration by elements. One of controls
                                       uc(t)=BT(t)FT(t1,t)c
where c is a solution of (2) has an interesting property. It has a 
minimum norm
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in space       among all controls that solve point-to-point 
controllability problem.

Using of intervals is motivated by high level of uncertainty in real 
models, especially in economical models, under control. Limited 
possibility for observations and measurements, dynamic and non-
stationary of processes make difficult the estimation of statistical 
characteristics of parameters, subjective probabilities and proper 
measures of fussy sets. In these conditions, well-known stochastic 
methods are not applicable and it is more preferable to utilize interval 
mathematical methods that assume knowing of only diapasons 
(intervals) of unknown parameters. Statistical functions of distribution 
of parameters inside the intervals are considered unknown. Interval 
approach is an effective tool for describing very wide circle of real 
problems. In mathematical modeling, interval methods are applied for 
analysis of uncertainty that arises when we use the data with errors, 
or we don’t know the probability properties of objects under research, 
or errors of rounding in calculations with ultimate precision [13]. The 
result of applying interval models is the point evaluation of solution or 
the range of possible solutions. Mathematical instruments of interval 
computations ([12, 14, 15]) allow to formulate interval equations, 
interval problems of optimization and analyze interval functions.

This paper is devoted to solving point-to-point controllability 
problem for linear system (1) with interval coefficients of matrices 
A(t) and B(t) . First problem that we have to solve is the problem of 
getting solutions of interval linear system.

Auxiliary problem

Consider an interval linear system
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where                                                    . Or in matrix form

Problem

We need to determine vector x Є Rn satisfying system (3) for any 
matrices A and b, where                                     .

Introduce nonnegative vector ε as a discrepancy between vector Ax 
and vector b

                       |Ax-b|≤ε. Then

Definition

vector x Є Rn is called an ε -solution of system (3) if
                       b-ε ≤ Ax ≤ b+ε

for any matrices                                                       . Note that ε -solution 
always exists even when system (3) is not consistent.

According to [5,10] a necessary and sufficient condition for vector x 
Є Rn to be an ε - solution of system (3) is given by the following

Theorem 1

Vector x Є Rn is ε - solution of system (3) if and only if

Definition

ε -solution that has minimum norm is said to be a universal 
solution. Denote the i-th component of vector
and the same for the i-th component of vector
and consider vector space Rm with the norm              . Then a                             
universal solution of system (3) can be obtained as a solution of the 
extreme problem 

Here eT=(1,1,...,1) is m-vector of one’s.

A universal solution always exists as well as ε -solution. Problem (4) 
has at least one solution: x =0 and                           . Here and further we 
understand all matrices and vector operations by components.

Introduce another representation of intervals for components of 
matrix A: if we let

then a0,ij-a∆,ij≤ aij≤ a0,ij+ a∆,ij is equivalent to                   .
In the light of notations (5) we have

 

And analogue of theorem 1 is

Theorem 2

Vector x Є Rn is ε -solution of system (3) if and only if

In more convenient matrix form condition (6) becomes

Here A0 and A∆ are m × n matrices of corresponding entries a0,ij and 
a∆,ij. Due to notation (5) the extreme problem (4) obtains the explicit 
form

Introduction of variable s= |x| allows us to reduce nonlinear 
problem (8) to linear problem (9)

Solution of linear problem (9) is a triple (x*, ε*, s*). x* is a universal 
solution and ε* is minimum discrepancy.

Sub-universal solution as an approximation of universal solution

Consider interval system (3) and assume that rank A0 = m ≤ n.
From (11) we obtain
                                  ε ≥ ε(x)     A∆|x| + b∆
where

It is clear that pair (x, ε(x)) satisfies an equation 

where                      . And, conversely, any solution of (10) and corres-
ponding vector ε≥ ε(x) are solutions of (7). Among all solutions of 
(10) our interest is related with normal solutions [6].
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Definition

Let us call a normal solution of (10) as a sub-universal solution.
Normal solution of (10) has an explicit form

where                                     .

For sub-universal solution    we have                                               . It is 
straightforward task to show that      has a minimum Euclidian norm.

Using a duality theory of linear problems [7] we obtain the relation 
between universal and sub-universal solutions: 

In particular, if A∆ = 0, then universal and sub-universal solutions 
coincide.

Controllability problem for interval dynamics

Consider interval linear system

Here  x(t) Є Rn is a state variable,  u(t) Є U Rr = is control.
Introduce matrices

Then inequalities in (12) can be rewritten as

Let us call a deterministic system of the form

centered in A0(t), B0(t) as a central system.

First, we give the outer evaluation of a beam of trajectories. Due 
to uncertainty of coefficients, the system (12) put into accordance to 
every control u(t) a family of trajectories corresponding to all feasible 
A(t),B(t) . We call a set of trajectories of the system (12) obtained for 
a fixed control u(t) and all feasible coefficients A(t),B(t) as a beam of 
trajectories corresponding to the given fixed control u(t) . A set X(t1) 
of right ends of phase trajectories x(t1) of the system (12) constructed 
for all feasible A(t),B(t) and fixed control u(t) is said to be a section of 
a beam of trajectories in the moment t1.

Consider a particular case of the system (12):

assuming that u(t)    0, A(t) is some feasible matrix and x0 is a fixed 
initial condition. For representation of a solution of (14), we use the 
matrix Cauchy problem
                             Ft(t,τ)= A(t)F(t, τ),
                             F(t,t)= I
(I is an identity matrix) and its fundamental matrix of solutions F(t, 
τ). Then 
              x(t)=F(t,0)x0, t≥0.

We introduce special notations                                            forfundamental 
matrices of the systems
accordingly. Due to representation of F(t, τ) via matriciant [6] integral 
matrix series

and evident inequality

we evaluate a solution of the system (14), considering a deviation of 
the beam of trajectories of the system (14) from the trajectory of the 
central system

Lemma

In notations for feasible matrices A(t) the following inequality 
holds:

One can easily prove this lemma applying the method of 
mathematical induction. Using inequality (16), we get the evaluation 
of a beam of trajectories of the system (14)

Evaluation (17) possesses two important properties. Firstly, for 
A∆(t)     0, from the definition of matriciants          , F|0|(t,0) we get
x     x0(t) that totally corresponds to the deterministic system (14) with 
a central matrix A0(t). Secondly, the evaluation (17) is decreasing, that 
is, ||F∆(T,0)||→0 if ||A∆(t)||→0 uniformly for t Є [0,t1].

Let us now evaluate a beam of trajectories of the general system 
(12) for some fixed control u(t) . For that we use the analogues to (15) 
evaluation of feasible coefficients

                           |B(t)|≤|B0(t)|+B∆(t)
We represent a solution x(t) of the system (12) by Cauchy formula 

[11] as

From here, we obtain

Note that for deterministic system (12) with zero length of intervals, 
the evaluation (18) becomes the exact and it gives a trajectory of the 
central system.

We formulate the controllability problem as: the problem is to 
solve point-to-point controllability problem for system (12) subject to 
condition (13) for initial point x0 Є Rn, terminal point x1 Є Rn and finite 
time interval t Є [t0,t1]

In other words, we have to determine a process (x(t),u(t)) such that 
x(t0)=x0 and x(t1)=x1 for any matrices A(t) and B(t) in (13).

Fix any matrices A(t) and B(t) in (13). Then according to Cauchy 
formula we get

If  x(t0)=x0 and x(t1)=x1, then controllability problem is equivalent 
to validity of the following equality

for some pair (x(t),u(t)) .

≡
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In turn, validity of (19) is equivalent to solvability of the system

Solution of (20) is related with solution of (19) by u(t)= BT(t)FT(t1,t)
ν. And the question of controllability of (12) is reduced to the question 
of solvability of the system (20). It is known [8, 9] that system (20) is 
consistent for any x0 and x1 if and only if the matrix

is positively defined.

Let us make use of this criterion for solving point-to-point 
controllability problem when A(t) and B(t) are any matrices satisfying 
(13).

Construct a central system

Then control u0(t)=B0
T(t)F0

T(t1,t)ν moves central system from 
position (x0,t0) to position (x1,t1) where ν is a solution of

and F0(t, τ) is a fundamental matrix of corresponding system

We regard control u0(t) as a basis for solution of controllability 
problem. Then dynamical system (12), (13) is point-to-point 
controllable from position (x0,t0) to position (x1,t1) under control u0(t) 
if and only if the system

has a solution.

Denote

Then due to evaluation (16) of a fundamental matrix F(t,τ), we get

Thus point-to-point controllability problem (12), (13) is reduced to 
solving of interval linear system (21).

Applying the concept of universal solution we form an extreme 
problem

Here

Solution (ν*, ε*, s*) of the linear problem (22) allows us to form 
a universal control u*(t)= B0

T(t)F0
T(t1,t)ν* that solves point-to-point 

controllability problem in the sense of ε solution.

Along with universal control we can construct a sub-universal 
control utilizing the explicit formula (11)

where                    is a solution of the system
                                  D0ν=f0 .
Theorem 3

Sub-universal control (23) moves central system

from the initial point x0 to the terminal point x1 for a finite interval 
[t0,t1].

One can check the statement of this theorem by means of 
substitution of control                                                 into the Cauchy formula.

Property 1

Sub-universal control has a minimum norm
in the space

This property follows from the classical theory of linear controlled 
systems [9].

Property 2

Sub-universal control is linear with respect to initial point x0.

For proving of Property 2 it is sufficient to write a control in explicit 
form using formulas

Property 3

The outer evaluation of a section of a beam of trajectories on sub-
universal control for t=t1 contains the outer evaluation of a section of 
a beam of trajectories on universal control.

The proof follows from the feasibility of sub-universal solution in 
the linear programming problem (22).
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