
Abstract

In this paper we explain the steps for classification of algebraic surfaces. We compute the fundamental 
group of complements of branch curves in CP2 and the fundamental group of the Galois covers of 
surfaces. We show the tight connection between these groups and Coxeter groups. Moreover, these 
groups are considered as invariants in the classification of surfaces.
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The Moduli Space

In algebraic geometry, a moduli space is a geometric space whose 
points represent algebraic geometric objects (curves, surfaces) of 
some fixed type, or isomorphism classes of such objects. 

If we can show that a collection of interesting surfaces induces 
the structure of a geometric space, then we can parameterize such 
surfaces by introducing coordinates on the resulting space. 

In higher dimensions, moduli of algebraic surfaces are more 
difficult to construct and study.

In this paper, we give a comprehensive scientific background and 
list of methods to make the classification easier. Classification of 
surfaces is done by Catanese [7, 8], Kulikov [9, 10], Manetti [11], 
Moishezon-Teicher [12, 13].

Let X → CPN be an embedded algebraic surface, f : X → CP2 be a 
generic projection of degree n. The branch curve of X in the plane 
CP2 is S.

We compute the fundamental group π1(CP2 −S), this group induces 
connected components in the moduli space: surfaces with the same 
group π1(CP2 − S) are in the same connected component.

The ultimate goal of the classification is to compute the group 
π1(CP2 − S), that is sometimes complicated. We try to find new 
invariants which distinguish connected components of the moduli 
space of surfaces (of general type). One of them is the fundamental 
group of the Galois cover of X.

The Set-up

In this section we describe the steps of the classification of algebraic 
surfaces, and follow the figure below:

(1) Degeneration of X to X0.

(2) Projection of X0 onto CP2 to get S0.

(3) Regeneration of S0 to S.

(4) Braid monodromy technique of Moishezon-Teicher.

(5) Fundamental group of the complement of S.

(6) Fundamental group of the Galois cover of X.
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Step 1. Take a surface X embedded in CPN1, we degenerate X to a 
union of planes X0. In order to understand how to do this, we give 
some examples of known degenerations.

Example 1. The surface X = CP1 × CP1 (Moishezon-Teicher [13]). 

The surface CP1 × CP1 is defined by z1z2 − 1z0z3 = 0 → CP3. When  
t = 0 in z1z2 − tz0z3 = 0, we get z1z2 = 0, which is CP2 ∪CP2.

Therefore X                   X0 =        ∪        CP2.

Example 2. The Veronese surface Vn (Amram-Lehman-Shwartz-
Teicher [3]).

Here we give an example of the Veronese surface where n = 2:

 
number of planesdegeneration

Figure 1: X0 = ∪CP2.2

Figure 2: Degeneration X0 of the Veronese V2.
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Example 3. The Hirzebruch surface Fk(a, b) (Amram-Ogata [4]).
Degenerated Hirzebruch surfaces look like trapezoids. The 

parameter k shows the number of the triangles on the left and right 
sides of the trapezoids.

Example 4. The surface T × T for T a complex torus (Amram-Teicher-
Vishne [5]).

Each complex torus degenerates to a triangle, so the degenerated 
object has identifications along the exterior edges.

Example 5. The K3 surfaces (Amram-Ciliberto-Miranda-Teicher [1]).

The K3 surfaces degenerate to pillow objects, such that the top and 
bottom parts are identified along their exterior edges. Here we give an 
example of a (2, 2)-pillow.

Step 2. We project X0 to the projective plane CP2 to get the branch 
curve S0.

In order to understand this, we take the following example:

Example 6. Let X0 be the degenerated Hirzebruch surface F1(2, 2).

A generic projection f0 : X0 → CP2 is the degeneration of f. Under 
f0, each of the 12 planes is mapped isomorphically to CP2. The 
ramification locus R0 of f0 is composed of points in which f0 is not 
isomorphism locally. Thus R0 is the union of the 13 intersection lines. 
Let S0 = f0(R0) be the degenerated branch curve; it is a line arrangement,

composed of the images of the 13 lines, see Figure 6.

Step 3. We regenerate the curve S0 and recover the branch curve S. 
Regeneration Rules of Moishezon-Teicher [16, 17] on k-points are as 
follows:

2-points. The diagonal line 3 regenerates to a conic that is tangent to 
the line 1.

3-points. We have two types of a 3-point. In each case, a diagonal line 
regenerates to a conic that is tangent to the other lines.

6-points. The diagonal line 3 (resp. 6) regenerates to a conic that is 
tangent to the lines 2 and 5 (resp. 4 and 7). The other singularities are 
intersections.
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Figure 3: Degeneration of the Hirzebruch F2(1, 1).

Figure 4: Degeneration of T × T.

Figure 5: The (2, 2)-pillow degeneration.

Figure 6: The degenerated Hirzebruch X0.

Figure 7: Regeneration of a 2-point.

Figure 8: Regeneration of the two types of a 3-point.

Figure 9: Regeneration of a 6-point.
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We are left with a 4-point in Figure 9. In Figure 10 we see how a 
4-point regenerates to a hyperbola and two pairs of parallel tangent 
lines.

Remark 1. In the next regeneration step, each tangency point 
regenerates to 3 cusps. Therefore S is a cuspidal curve.

Step 4. We compute the braid monodromy of Moishezon-Teicher [14, 
15]. Here are the steps:

1. Find singularities in a curve S and take their x-coordinates xi,
2. take ”good” points Mi next to these xi,
3. take loops around the xi at Mi,
4. lift them and project to the fiber above Mi,
5. get a motion of the intersection points of S with the fiber over Mi.

Example 7. Consider the curve y2 = x2 and follow the above steps of 
the braid monodromy computation.

Now we give a result of Moishezon-Teicher [14] concerning the 
monodromy computation.

Proposition 1. Take the curve S defined by y2 = xm. Then the braid 
monodromy is hm, where h is a positive half-twist.

Proof. Take a tiny loop coming from the ”good” point 1 to x1, 
denoted by x = e2πit, t ∈ [0, 1]. We lift this loop to the curve S and get 
two paths:

                           (e2πit, e2πimt/2)

                           (e2πit, -e2πimt/2).

We project them onto the fiber above 1 and get two paths:
                                      eπimt

                                     -eπimt.

This gives the m-th power of the motion corresponding to [−1, 1]:
                                       eπit

                                     -eπit.
Step 5. We compute the group  π1(CP2 − S) =            (by means 
of generators and relations), it is the fundamental group of the 
complement of the branch curve S in CP2. 

In order to produce elements of the fundamental group, we cut the 
braid at some point, then we produce two loops beginning and ending 
at the good point, circling the end points of the braid, see for example 
Figure 12.

We give the Theorem of Zariski-van Kampen [19, 20] for cuspidal 
curves:

Theorem 1. Let S be a cuspidal curve of degree n, then the fundamental 
group is generated by n  generators and admits the following relations:

In some cases the fundamental group  π1(CP2 − S) might be 
very complicated, therefore we find new invariants. One of them is 
the fundamental group of the Galois cover of X. An example of a 
complicated  π1(CP2 − S) is the one of T × T (Figure 4). In this case 
the group has 54 generators and around 2000 relations.

Step 6. We give a definition of the Galois cover of X ([13]) and show 
how to compute the fundamental group of a Galois cover of an 
algebraic surface.

Definition 1. We define the fibred product

for 1 ≤ k ≤ n, and the extended diagonal

The closure                                                            is called the Galois 
cover with respect to the symmetric group.

Remark 2. There are many Galois covers with respect to the symmetric 
group Sk, k < n; but only for k = n we identify the fundamental group 
of the Galois cover π1(XGal) as the needed group. The Galois cover is a 
minimal smooth surface of general type.

Now we understand how to find the fundamental group of the 
Galois cover π1(XGal). Consider the quotient group π1(CP2 − S)/          and 
take a canonical surjection from this quotient to the symmetric group Sn:
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Figure 10: Regeneration of a 4-point.

Figure 11: The braid monodromy.

{ }j R〈Γ | 〉

Figure 12: The elements of the fundamental group.
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The fundamental group  π1(XGal) is the kernel of this surjection, see 
Moishezon-Teicher [13].

Now we present various results of the computation of the 
fundamental group π1(XGal).

(1) X = CP1 × CP1 → CP3 [13]:
      π1(XGal) is finite and commutative, a ≥ 3, b ≥ 2, and  π1(XGal) = 0 for 
a, b relatively prime.

(2) X = CP1 × T → CP5 for T a complex torus [2]:
      π1(XGal)      Z10; and in general,  π1(XGal)      Z4n-2.

(3) X = T × T → CP8 for T a complex torus [5]:
      π1(XGal) is nilpotent of nilpotency class 3 (there is a central series 
G = H1 ≥ H2 ≥ ... ≥ Hn = e such that each Hi is a normal subgroup of G 
and Hi /Hi+1 is in the center of G/Hi+1 and in our case n = 3).

(4) X = F1(2, 2) (Hirzebruch surface) [6]:
π1(XGal)       Z2 . In general, if c = gcd(a, b) and n = 2ab + kb2, then 

π1(XGal)       Zn-2.

The Breakthrough to Coxeter and Artin Groups

We consist on the work of Rowen-Teicher-Vishne [18]. They define 
C(T) to be a Coxeter group related to a graph T:

-generators      are the edges of T,
-relations

C(T) has a natural map onto Sn, where n is the number of vertices 
of T. Then CY(T) is a quotient of C(T) and includes such cases: The 
“fork” relation is

The main Theorem in [18] is the following:

where At,n is a group which contains t copies of Zn−1, n is the number 
of vertices of T, t is the number of cycles of T.  The generators of the 
group are 

The connection to the classification of surfaces is explained using 
an example. Take the surface T × T, where T is the complex torus. 
Projecting T × T to CP2, we get the branch curve S. The group
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π1(CP2 − S) has 54 generators and admits around 2000 relations. We 
compute the quotient π1(CP2 − S)/         . The following exact sequence 
holds:

where  π1(XGal) is nilpotent of class 3.

In general, there is a projection of the group                        on  
the group                                                                 so it is possible to 
calculate π1(XGal) explicitly.
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