
Abstract

Krylov subspace methods, especially when combining with suitable preconditioners, are of great 
efficiency in solving large sparse linear systems. In this paper, based on symmetric successive over 
relaxation (SSOR) iterative method, an m-step polynomial preconditioner is designed and some 
theoretical results are presented. Numerical experiments demonstrate that the proposed preconditioner 
is effective in accelerating GMRES method for solving nonsymmetric positive definite linear systems.
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Introduction

Consider the system of linear equations

Where is A a large, sparse, nonsingular matrix and b is a known 
vector. Numerical methods for solving linear system ( 1.1 ) can 
roughly be classified into sparse direct methods and iterative solvers. 
In general, direct solvers for large-scale problems are accurate, robust 
but memory consuming, see, for instance, [1,2]. Meanwhile, iterative 
methods involve only matrix-vector multiplications and hence can 
be attractive alternatives to direct solvers. Krylov subspace methods 
are a class of important iterative methods that are often applied for 
solving ( 1.1 ). Such methods include conjugate gradient method (CG) 
for symmetric positive definite coefficient matrices, see, for instance, 
[3]; symmetric LQ method (SYMMLQ) and minimum residual 
(MINRES) methods for symmetric indefinite coefficient matrices, 
see, for instance, [3,5-8]; generalized minimum residual (GMRES), 
biconjugate gradients stabilized (BiCGSTAB), quasi-minimum 
residual (QMR), BiCGCR2 that is anextension of biconjugate residual 
(BiCR) and biconjugate A-orthogonal residual (BiCOR) methods 
for nonsingular coefficient matrices, see, for instance, [4,9-13], and 
so forth. The preconditioned Krylov subspace method in which a 
preconditioner is combined with are widely used for solving large 
sparse linear systems because an efficient preconditioner can speed 
up the iteration greatly. A number of efforts have been devoted to 
the construction of suitable preconditioners when preconditioned 
Krylov subspace methods are used to solve the linear systems arising 
in different applications, see [3,4,13-15].

In this paper, we propose a polynomial preconditioner based on 
symmetric successive over relaxation (SSOR) method proposed in 
[18] when preconditioned Krylov subspace methods are used to solve 
the nonsymmetric positive definite linear systems (1.1). The outline 
of the paper is as follows. In section 2,we review alternating iterative 
methods and describe polynomial preconditioners succinctly; the 
construction of a new polynomial preconditioner is presented in 
section 3; In section 4, some numerical experiments are carried out 
to demonstrate the effectiveness of the proposed method; concluding 
remarks are given in the last section.
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Preliminaries

In this section, alternating iterative methods and polynomial 
preconditioners are introduced. They are foundations of the proposed 
SSOR-based m- step polynomial preconditioners.

Alternating Iterative Methods

Alternating iterative methods have been widely used for solving the 
linear system ( 1.1 ), see, for instance, [4,15-17]. Let A=Mi-Ni(i=1,2) 
be two splittings of the coefficient matrix, where Mi (i=1,2)are 
nonsingular. For an initial vector  x(0), an alternating iterative method 
is implemented as follows:

By bringing             into the second step of (2.1), we have

If M1+N2 is nonsingular, let                                       , M=M1(M1+ M2 )
-1  

M2 and N=MG. Then ( 2.2 ) is an equivalent stationary iterative scheme 
to ( 2.1 ) for splitting  A=M-N. ( 2.1 ) converges if and only if  ρ(G)<1, 
where  ρ(.) denotes the spectral radius of the corresponding matrix.

The following Lemma, refer to [18,19], shows that the alternating 
iteration is convergent if the splittings satisfy some special conditions.

Lemma 2.1 Let  A Є Rn×n be a nonsymmetric positive definite 
matrix,  A= M1-N1= M2-N2 are both  p-regular splittings with N1 and N2

, and , .n n nAx b A R x b R×= ∈ ∈







=
+=

+=
++

+

...2,1,0
.

,
)

2
1(

2
)1(

2

)(
1

)
2
1(

1 ，k
bxNxM

bxNxM
kk

kk

)
2
1( +k

x
bMNMMxNMNMx kk 1

121
1

2
)(

1
1

12
1

2
)1( )( −−−−+ ++=

1
1

12
1

2 NMNMG −−=

Special Issue: Krylov Subspace-Methods: Applications and Their Issues 

(1.1)

(2.1)

(2.2)

https://doi.org/10.15344/ijaem/2017/116
https://doi.org/10.15344/ijaem/2017/116


Int J Appl Exp Math                                                                                                                                                                                                IJAEM, an open access journal                                                                                                                                          
                                                                                                                                                                                                                                   Volume 2. 2017. 116 

being both symmetric. Denote G=                            , then ρ(G)<1.

A=M-N is called a  p-regular splitting if and only if M is nonsingular 
and MT + N is positive definite. The proof details of Lemma 2.1 can 
be found in [18,19]. Lemma 2.1 shows that when A  is nonsymmetric 
positive definite, the alternating iterative method is convergent for any 
starting vector  x(0) if both splittings in alternating iterative procedure 
are  p-regular with N1  and  N2 being both symmetric.

Decompose the coefficient matrix A  in ( 1.1 ) as 

where D, -L, -U are the diagonal, the strictly lower triangular and 
strictly upper triangular parts of  A. Specifically, we consider the 
following SSOR iteration proposed in [18] for nonsymmetric positive 
definite linear systems ( 1.1 ).

Where ω  is a positive constant. Comparing with formula ( 2.1 ), the 
splittings A=Mi-Ni(i=1,2) in ( 2.4 ) are with

and

 
in ( 2.4 ). Suppose that                                           is nonsingular and  
define

Then SSOR iterative method ( 2.4 ) is equivalent to the stationary 
iterative procedure                                                           with the splitting 
A=M(ω)+N(ω), where N(ω) =  M(ω) G(ω).

The choice of relaxation factor ω in ( 2.4 ) is not necessarily easy, and 
depends upon the properties of the coefficient matrix. The following 
theorem shows that the SSOR iteration ( 2.4 ) is convergent when  ω Є 
(0,1)for special coefficient matrices.

Theorem 2.1: Let A Є Rn×n be a nonsymmetric positive definite matrix 
with H =(A+AT) being its symmetric part. Split A=D-L-U  where D,-
L-U are the diagonal, the strictly lower triangular and strictly upper 
triangular parts of  A. Let η =λmin(B)  and μ= λmin(B) be the minimum 
eigenvalues of B=H+2(U+UT)  and  C = H+2(L+LT), respectively. 
If  η≥0 and μ≥0, then when ω Є (0,1), the SSOR iteration (2.4) is 
convergent.

Proof : Consider the splitting  A=M1-N1, where M1  and N1  are 
shown in ( 2.5 ),  M1 is nonsingular and N1  is symmetric. Let  
H(M1)=(M1+MT)/2, then 

Since η ≥ 0 and ω Є (0,1), H(M1)+N1 is symmetric positive definite. 
Therefore,                    is positive definite, i.e., A=M1-N1 is a  p-regular 
splitting of  A. Similarly, A=M2-N2 where M2  and N2 are shown in ( 
2.6 ) is also a  p-regular splitting of A. Combining Lemma 2.1, SSOR 
iteration ( 2.4 ) is convergent.

Polynomial Preconditioners

Let A=M-N  be a splitting of A  and ρ(M-1N)<1. Define  G=M-1N, in 
view of the fact that M-1A=I-G and ρ(G)<1, we have.

Denote

Pm can be applied as a preconditioner to A and we call it an m-step 
polynomial preconditioner. Pm can also be induced from the two-stage 
iteration methods of trivial outer splittings; see [20-23]. Since ρ(G)<1, 
I-Gm and                  are nonsingular. Therefore, Pm is well defined.

In the preconditioned Krylov subspace methods, the main 
computation is to solve a linear system with the coefficient matrix 
being the preconditioner. For example, if we combine preconditioner   
to Pm GMRES method, we need to solve a linear system Pmz = r. It 
follows directly from ( 2.10 ) that

The algorithm for calculating z is depicted in Algorithm 1.

Algorithm 1 Solving Pmz = r.

1: Input Z(0)=0

2: For  k=1,...,m do

     End for

3: Output  z=z(m).

The Polynomial Preconditioners Based on SSOR

By utilizing SSOR method introduced in Section 2.1, we propose 
the following  m- step polynomial preconditioner

Where  G(ω) and  M(ω) are defined in ( 2.7 ) and ( 2.8 ), respectively. 
We term Pm(ω) as SSOR(m). SSOR(m) preconditioned GMRES 
method is particularly symbolized as SSOR(m)-GMRES. The 
SSOR(m)-preconditioned matrix can be expressed as

From Algorithm 1, we know when  m increases, more linear systems 
with same coefficient matrix M(ω) should be solved. However, the 
following theorem shows that the eigenvalues of the SSOR(m)-
preconditioned matrix are more clustered if m  is bigger, and thus 
the convergence may be faster. In the subsequent of the paper, λ(.) 
denotes the set of eigenvalues of the corresponding matrix.

Theorem 3.1 Let G(ω) be defined in ( 2.7 ) and ρ(G(ω))<1, then the 
eigenvalues of the SSOR(m)-preconditioned matrix Pm(ω)-1A are
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located in a disk centered at  (1,0) with radius                    .

Proof: Suppose  λ is an eigenvalue of  G(ω)m and  is an eigenvector 
of  λ, that is,

 
λ locates in B((0,0)), ρ(G(ω)m) where B((a,b),r) denotes a disk with 
point (a,b) being its center and r being its radius. Since
                                                                 , then                                              , 

we have                                                                                                   .

Since ρ(G)<1, Theorem 3.1 shows that the larger m  is, the smaller 
spectral radius of the preconditioned matrix is, and thus we can 
expect a faster convergence. However, the computational cost 
becomes higher when m  increases. How to select a suitable value of  
m is difficult and problem dependent.

Numerical Experiments

In this section, we demonstrate the performance of the proposed 
SSOR-based polynomial preconditioner when used in GMRES 
method to solve some examples. All codes are run in MATLAB 
R2013a (version 8.1.0.604) on a PC configured with an Intel(R) 3.4G 
CPU and 8GB RAM. The initial guess is taken to be zero, the right-
hand side is a column vector which entries are sums of corresponding 
rows of the coefficient matrix A. The iteration is terminated once the 
residual satisfies 

Example 4.1: For a fixed n, let  I Є Rnxn be the identity matrix of order   
n and E Є Rnxn  of the form

Where E1  is an n-by-n-random matrix generated by the function 
randn() in matlab. D Є Rnxn is a diagonal matrix whose diagonal 
elements are  

We consider linear system ( 1.1 ) with coefficient matrix  A=E+D.

Example 4.1 is not an increasing denser discretization of a continuous 
model. The computing results of Example 4.1 are shown in Table 1. 
Where “IT” denotes the iteration steps, “TIME” denotes the running 
time in milliseconds which is shown in parentheses after “IT”. We just 
show the results for m=1,2,...,5  in SSOR(m)-GMRES method. Table 
1 tells us that if m is larger, the iteration number is smaller. But when 
m≥5 , the computing time will not decrease, which is in accordance 
with the analysis in Theorem 3.1.  m=4 could be the best choice for 
this example. Table 2 shows the optimal relaxation parameter ωopt 
used in SSOR(m)-GMRES method. In our experiments, we find the 
optimal ω is always located in range (0,1) and ωopt is determined by 
trial and error. That is, we searched over a range from 0.001 to 0.999 
with step 0.001, and the optimal  ω is determined which makes the 
iterative steps smallest.

The spectral distributions of the coefficient matrix A and the 
preconditioned matrix   for Example 4.1 when n=225  are shown in 
Figure 1. They are totally consistent with the conclusions of Theorem 
3.1.
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IT(TIME)

Method

100 225 400 625 900

GMRES 29(3.86) 35(4.22) 36(1.28) 37(1.67) 38(2.40)

SSOR(1)-GMRES 14(0.35) 17(0.63) 17(1.15) 17(2.97) 17(5.58)

SSOR(2)-GMRES 8(0.23) 9(0.45) 10(1.05) 9(2.74) 9(5.40)

SSOR(3)-GMRES 6(0.21) 7(0.46) 7(1.02) 7(3.01) 7(6.14)

SSOR(4)-GMRES 4(0.18) 5(0.43) 5(0.97) 5(2.91) 5(6.01)

SSOR(5)-GMRES 4(0.20) 4(0.43) 4(0.97) 5(3.47) 4(6.19)
Table 1: Computing Results of Example 4.1.

ωopt

Method

100 225 400 625 900

SSOR(1)-GMRES 0.583 0.798 0.802 0.609 0.686

SSOR(2)-GMRES 0.896 0.812 0.651 0.724 0.785

SSOR(3)-GMRES 0.873 0.875 0.833 0.860 0.851

SSOR(4)-GMRES 0.823 0.833 0.827 0.829 0.789

SSOR(5)-GMRES 0.837 0.856 0.861 0.886 0.843

Table 2:  ωopt in SSOR(m)-GMRES for Example 4.1

Figure 1: Continue...

(a)Spectral distribution of A (b) m=1

nn
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Example 4.2 ( see [24] ) Consider the augmented linear systems 
(1.1) with coefficient matrix

Where

and 

represents the Kronecker product, TH and F are tridiagonal matrices 
as follows:

                                            ,  

Discretization step size                   .

Same as in [24], we perform experiments when μ=0.5  and δ =10  in 
this example. Computing results are listed in Table 3. The computing 
effects are similar to those of Example 4.1. If  m is larger, the iteration 
number is smaller. But when m≥ 5 , the computing time will not 
decrease. m=4 could be the best choice for this example. Table 4  
displays the experimental optimal parameter ωopt in SSOR(m)-GMR
ES.                                    
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(d) m=3(c) m=2

(e) m=4 (f) m=4

Figure 1: Spectral distribution of pm(ω)-1A for Example 4.1
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1
h

n
=

+

IT(TIME)

Method

8 16 24 32 40

GMRES 31(0.66) 43(1.67) 63(5.03) 79(23.87) 98(44.84)

SSOR(1)-GMRES 12(0.26) 17(0.74) 21(1.99) 26( 6.54) 32(13.84)

SSOR(2)-GMRES 8(0.19) 12(0.63) 16(1.87) 19( 5.71) 23(12.25)

SSOR(3)-GMRES 7(0.18) 10(0.61) 13(1.81) 15( 5.35) 19(11.83)

SSOR(4)-GMRES 6(0.17) 9(0.60) 12(1.80) 14( 5.35) 16(11.68)

SSOR(5)-GMRES 5(0.16) 8(0.60) 11(1.85) 12( 5.27) 15(11.56)

Table 3: Computing Results of Example 4.2.

ωopt

Method

8 16 24 32 40

SSOR(1)-GMRES 0.992 0.887 0.990 0.983 0.990

SSOR(2)-GMRES 0.980 0.965 0.976 0.928 0.979

SSOR(3)-GMRES 0.958 0.946 0.954 0.996 0.954

SSOR(4)-GMRES 0.964 0.899 0.966 0.922 0.999

SSOR(5)-GMRES 0.937 0.919 0.968 0.987 0.986

Table 4:  ωopt in SSOR(m)-GMRES for Example 4.2.

n

n

https://doi.org/10.15344/ijaem/2017/116


Int J Appl Exp Math                                                                                                                                                                                                IJAEM, an open access journal                                                                                                                                          
                                                                                                                                                                                                                                   Volume 2. 2017. 116 

Conclusions

In this paper, we proposed an  m-step polynomial preconditioner 
based on SSOR when preconditioned Krylov subspace methods 
such as GMRES method is used for solving the nonsymmetric 
positive definite linear systems. Theoretical analysis and numerical 
experiments demonstrate that the proposed preconditioner is efficient 
to be used in GMRES for solving nonsymmetric positive definite 
linear systems.
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