
Abstract

This paper presents a non-informative prior which maximizes a general divergence (called the 
-divergence) between the prior and the corresponding posterior distribution for non-regular family of 
distributions whose support depends on unknown parameter. This result is a general- ization of the result 
of Ghosal and Samanta [1] based on the Kullback-Leibler divergence. In a non-regular case, the prior 
which is different from the Jeffreys prior is obtained under certain conditions. Further, we show that the 
prior which maximizes the chi-square divergence does not exist for non-regular family in general. This 
result differs from the regular case by Ghosh et al. [2]. The comparison between regular and non-regular 
cases is also discussed.
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Introduction

In Bayesian inference, the selection of priors has been an important 
and much discussed problem. The concept of prior distribution is 
useful when we have much prior information for unknown parameter. 
However, we often have a little prior information for real situations. 
In such cases, we need to consider `non-informative' or `objective' 
prior. One of the most widely used non-informative priors is a 
uniform distribution over the parameter space. However, a uniform 
prior lacks invariance under smooth one-to-one transformation. 
For example, if we do not have information about the parameter θ, 
and we do not have information about 1/θ, either. Thus, a uniform 
prior lacks invariance under smooth one-to-one transformation in 
such a situation. To overcome this difficulty, Jeffreys [3] proposes the 
prior which is proportional to the positive square root of the Fisher 
information number in one dimensional case, which is known as 
the Jeffreys prior. This prior is invariant under smooth one-to-one 
transformation. Jeffreys [3] also generalizes this to multidimensional 
case by letting the prior be proportional to the positive square root 
of the determinant of the Fisher information matrix. However, in 
the presence of nuisance parameters, this prior suffers from many 
problems (see Bernardo and Smith [4]).

Another class of non-informative priors is the reference prior, 
which was proposed by Bernardo [5] and was extended by Berger 
and Bernardo [6]. The reference prior is defined by maximizing 
the Kullback-Leibler (KL) divergence between the prior and the 
posterior under some regularity conditions. This prior maximizes 
the expected posterior information to the prior, i.e., the prior is the 
`least informative' prior in some aspects. In regular case, the reference 
prior coincides with the Jeffreys prior in one-dimensional case, but 
does not in the presence of nuisance parameters (Bernardo and Smith 
[4]). These results are derived rigorously by Clarke and Barron [7, 
8]. Besides these, there are many methods defining non-informative 
prior, e.g., the entropy maximizer of Jaynes [9], and the probability 
matching prior of Welch and Peers [10] (see also Tibshirani [11], 
and Datta and Mukerjee [12]) among others. We also refer to Kass 
and Wasserman [13] and Ghosh [14] as reviews on non-informative 
priors.

In the context of the reference priors, Ghosh et al. [2] derives the 
priors which asymptotically maximize the more general divergence
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measure (called the α-divergence) between the prior and the 
corresponding posterior. We note that the KL divergence, the 
Bhattacharyya-Hellinger divergence and the chi-square divergence 
are special cases of the α-divergence. Ghosh et al. [2] also shows that 
maximizing the divergence yields the Jeffreys prior with the exception 
of the case of the chi-square divergence. Maximizing the chi-square 
divergence yields a prior different from the Jeffreys prior.

However, Ghosh et al. [2] deals with the case of regular distributions 
and the result is not applied for non-regular distributions whose 
support depends on unknown parameter. The asymptotic expansion 
of the posterior distribution for non-regular distribution is derived 
by Ghosh et al.[15] and Ghosal and Samanta [16]. They show that 
the first order asymptotic distribution of the posterior distribution is 
an exponential distribution, that is, the asymptotic normality of the 
posterior distribution does not hold in non-regular case. Ghosal and 
Samanta [1] derives the prior which asymptotically maximizes the KL 
divergence in non-regular case. In non-regular case, the prior which 
is different from the Jeffreys prior is derived.

The aim of this paper is the generalization of the result of Ghosal 
and Samanta [1] by using the α-divergence. In the case of -1 < α < 1, 
we obtain the same prior given by Ghosal and Samanta [1]. On the 
other hands, we show that the prior which maximizes the chi-square 
divergence (α = -1) does not generally exist in non-regular case. This 
result differs from the regular case in Ghosh et al. [2].

Asymptotic expansion of the posterior distribution and the 
shrink-age argument

Let X1,..., Xn be independent and identically distributed observations 
from a density f (x, θ ) (θ Є Θ        R) with respect to the Lebesgue measure.⊂
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We assume that for all θ Є Θ, f(x, θ) is strictly positive in a closed 
interval S(θ):= [a1(θ); a2(θ)] depending on unknown parameter θ and 
is zero outside S(θ). It is permitted that one of the endpoints is free 
from θ and may be plus or minus innity. We assume the following 
conditions on the density f(x, θ), which are the same conditions as 
Ghosal and Samanta [16]. 

(A1) The endpoints a1(θ) and a2(θ) of the support are continuously 
differentiable functions of θ. 
(A2) On the set {θ: a1 (θ)} < x < a2(θ), f(x, θ) is continuously 
differentiable in θ.
(A3) For each x, log f(x,θ) is twice differentiable in θ on θ : a1(θ) < x < 
a2(θ)}. Further, the following holds:

(a) For all  θ Є  Θ, c(θ) := Eθ(∂/∂θ) log f(X1,θ)] < ∞ is differentiable in 
θ and c(θ) ≠ 0. Moreover, d(θ) := Eθ[(∂2/∂θ2) log f(x1,θ)] < ∞. 

(b) There exist a neighborhood Nθ of the true parameter θ0 and an 
integrable function Hθ(x) such that for all θ Є N0 and  x Є (a1(θ), a2(θ)), 
(∂2/∂θ2) log f(x1, θ) | < Hθ(x).

(A4) For a sufficiently large λ > 0, 

(A5)                                                                                               , where f (x, θ, 
ρ) =  sup {f (x, 0') :| 0-0'| ≤ ρ}.                                                      

Further, we assume the following on the prior density.

(A6) The prior density π(θ) is twice differentiable in θ.

We note that conditions (A3)-(A5) ensure the validity of the 
asymptotic expansion of the posterior distribution (cf. Ghosal and 
Samanta [16]). Families such as uniform distribution U(0, θ), location 
family f (x, θ) = f0 (x-θ), with a positive smooth density f0 on [0, ∞) and 
the truncation family                                                       , where g is a  po- 
sitive smooth density on [0,∞) and                   satisfy the  
above conditions.

In view of the results of Ghosh et al. [15], in order to have a limit 
of the posterior distributions, it is necessary that the set S(θ) is either 
increasing or decreasing in θ, that is, S(θ) satisfies either
ε) for ε > 0 or                                   for  ε < 0, respectively. For this reason, 
we may assume S(θ) is decreasing without loss of generality. Indeed, 
the case where S(θ) increases with θ may be reduced to the case where 
S(θ) decreases by the reparametrization                   . When S(θ) is de-
creasing, the set {a1(θ) ≤ Xi ≤ a2(θ); i = 1; 2, . . . ,n} can be expressed as 
                                  where                                                            and 

                                                          . If a1 does not depend on  θ, then we 
interpret the above     as                 while it is interpreted as                if 
a2 does not depend on θ. Note that                                            . Define

Note that                                                          (Ghosal and Samanta [16], 
Lemma 2.1). By Theorem 3.1 of Ghosal and Samanta [16], the 
posterior density of                               given X = (X1, . . . , Xn) has the as- 
ymptotic expansion

where

                                                                            

Putting                                in (1), we have

Here, the (expected) α-divergence between the prior and the posterior 
is dened by

where m(x) is the marginal density of X = (X1, . . . ,Xn) (cf. Amari 
[17] and Ghosh et al. [2]). Note that the α-divergence smoothly 
connects the KL divergence (α→0), the squared Bhattacharyya-
Hellinger divergence (α = 1/2), and the chi-square divergence (α = 
-1). Let Ln(θ) be the likelihood function of θ. From the relation Ln(θ)π 
(θ) = π(θ|x) m(x), we can express (2) as

where Eθ[·] denotes the conditional expectation of X given θ. In 
order to derive the prior which maximizes the expected α-divergence, 
we need to compute the expectation Eθ[π-α(θ|x)] in (3). Since the exact 
computation of this expectation is not easy, we consider the asymptotic 
approximation of Eθ[π-α(θ|x)]. We have the following theorem.

Theorem 2.1. Under the conditions (A1)-(A6), the asymptotic 
approximation of Eθ[π-α(θ|x)] for α < 1 is

as n →∞, where

are continuous functions, not involving π(θ).

Proof. Step one. We consider a proper prior density           such that the  
support of            is compact in the parameter space and            vanishes  
outside of the support while remaining positive in the interior. Next, we  
compute the expectation                                                                            , where                    denotes  
the expectation under the posterior density              . Since 
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the expectation of                        under                     is given by

 

Note that in order to compute the above integration, we put   
                     =-t and regard the integration as the expectation of the 
exponential distribution with mean parameter (1-α ).

Step two. For an interior point θ of the support      , we compute  
                                                                 , Eθ[·] denotes the conditional  
expectation of X given. Since  

                                                     , the method in Datta and Mukerjee 
[12] gives                

Where

is a continuous function, neither involving  π (θ) nor           .

Step three. The nal step of this argument involves integrating λ(θ) 
with respect to         and then making            degenerate at θ. We have 

                                                                                          
                                                                                         

Here, integration by parts for the second term of (5) gives

                                                                                                                   .
Now suppose that the support of       contains the true θ as an  

interior point. Then allowing           to converge weakly to the degenerate 
prior at θ, we have

Hence, the asymptotic approximation of Eθ[π-α(θ|x)] is given by

where

is a continuous function, not involving π (θ). This completes the proof.

Remark 2.1. In the proof, we adopt the computation method called 
the shrinkage argument (Ghosh [18], Datta and Mukerjee [12]). This 
method is a Bayesian approach for frequentist computations. The 
shrinkage argument consists of three steps (For the details, see Datta 
and Mukerjee [12]).

Remark 2.2. Theorem 2.1 does not hold for  α ≥ 1 as is evident from 
the right-hand-side expression in (4).

Non-informative priors as maximizer of expected 
α-divergences

In this section, we derive maximizing priors of the expected 
α-divergences between the prior and the corresponding posterior in 
a similar way to Ghosh et al. [2]. We assume the following condition 
concerning the integration of order.

(A7) From (4) the expectation Eθ[π-α(θ|x)] is expressed by

where d(θ) = O(n-1-α), then it holds

                                                                 
where c(θ) is a function of θ, and d(θ) is a function of  θ and n.

Remark 3.1. In fact, since it is not easy to conrm the condition (A7), 
we do not discuss it here.

From (4) and (A7), for α < 1 and  α ≠ 0 or -1, the first order 
approximation to (3) is given by

We now consider maximization of (7) with respect to  π (∙) under ∫π 
(θ)dθ = 1 according to the value of α. The main theorem in this paper 
is the following.

Theorem 3.1. Under the conditions (A1)-(A7), non-informative prior 
based on the α-divergence is given by

                         , 

for -1 < α < 1, and such prior generally does not exist for α ≤ -1.

Proof. The proof consists of the following five parts.
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Case I 0 < α < 1.

In this case, we consider minimizing

with respect to π() under ∫π (θ)dθ = 1. First, we recall the HÖlder 
inequality, i.e.,

where p > 1, q > 1 and p-1+q-1 = 1. The equality holds if and only if 
{f1(θ)}p = a{f2(θ)}q, where a is a constant. Now putting  

                                                        , p = 1+ α and q = (1+α)/ α, we have

or equivalently,

The equality holds if and only if                          , which is the max-
imizing prior of the expected α-divergence for 0 < α < 1.

Case II -1 < α < 0.

We need to maximize

with respect to π(∙) under ∫π (θ)dθ =1, Here let 

                                                        , p = 1+ α and q = (1+α)/ α, By the 
HÖlder inequality, it holds

The equality holds if and only if                         , which is the ma-
ximizing prior of the expected α-divergence for -1 < α < 0.

Case III  α < -1.

Putting α = -β(β>1), by (7), we have 

Hence it suffices to maximize

with respect to π(.) under ∫π (θ)dθ =1. We may write

                                                                     ,

where E[∙] denotes the expectation under the prior π(∙). Here we 
recall the Lyapounov inequality (DasGupta [19]), i.e.,
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In this inequality, putting a = 1,  b = β,

or equivalently,

The equality holds if and only if                           . Hence in this case 
                           is the minimizer rather than the maximizer of (7). For 
α < -1, we can show that there is no maximizing prior in the same 
way of Ghosh et al. [2]. For the Lagrange multiplier λ, we put Hλ(π)  
:=                                                                     . Since

the prior                             is the minimizer and not  the maximizer.  

Case IV  α = 0.

For  = 0, we need to interpret (7) as its limiting value (when it 
exists). In this case, (7) corresponds to the KL divergence. Indeed, it 
suffices to compute the following

By L'Hospital's rule, we have

Hence, we need to minimize

with respect to  π (∙) under ∫π (θ)dθ = 1. For the Lagrange multiplier 
η, we put Hη(π) :=  π (θ) log{π(θ)/c(θ)|} + ηπ(θ). Since

we have                        . This is the maximizing prior of the expected 
α-divergence for  α = 0 (see also Ghosal and Samanta [1]).

Case V α =-1.

In this case, the α-divergence corresponds to the chi-square 
divergence. Since  πα+1(θ) = 1, the rst order term in (7) is constant, 
and we need to consider the second order term. When  α =-1 in (4), 
we note that α (1-α) = -2 < 0. When c(θ) > 0 for all θ Є Θ , it suffices 
to maximize

with respect to  π (∙) under ∫π(θ)dθ = 1. However, we can not find such 
π (θ) in general. For example, putting π(θ) = sin θ(0 ≤ θ ≤ π/2), we have  
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we can also show that the maximizing divergence prior generally does 
not exist in the case of c(θ) < 0.

Comparison between Regular and Non-regular Cases

As previously stated, Ghosh et al.[2] derives non-informative prior 
as a maximizer of the α-divergence in regular case. In this section, we 
compare our result with Ghosh et al. [2]. The result is given in Table 1.

From Table 1, for -1 < α < 1, the prior                               in non-regular 
case corresponds to the Jeffreys prior in regular case. This is the same 
as the reference prior in Ghosal and Samanta [1] and the probability 
matching prior in Ghosal [20]. The prior                              is also invar- 
iant under a smooth one-to-one transformation, that is, if we 
consider a smooth one-to-one transformation η = ϕ(θ). the maximum 
divergence prior for  is                                        For  α = -1, i.e., the  
chi-square divergence, Ghosh et al. [2] derives a prior which is 
different from the Jeffreys prior in regular case. On the other hand, 
in non-regular case, we show that there is no maximizing prior of the 
chi-square divergence in general. For α = -1, there is no maximizing 
prior in both cases.

Finally we show some typical non-regular examples and compute 
the prior                                    for each examples. Note that Examples 4.1 and 
 4.3 are the same as Ghosal and Samanta [1].

Example 4.1 (Location family). Let f0 be a strictly positive density on 
[0, ∞). Consider the location family of distribution f(x, θ) = f0(x-θ). 
In particular, the location family f(x, θ) =e-(x-θ)(x > θ) of exponential 
distribution belongs to this. Since |c(θ)| is constant, the uniform prior 
is the maximum divergence prior.

Example 4.2 (Scale family). Let f0 be a strictly positive density on [0; 
1]. Consider the scale family of distribution f(x, θ) = θ-1 f 0(x/ θ)( θ > 0). 
In particular, the uniform distribution U(0, θ )(θ > 0) belongs to this. 
Since                                                    is the maximum divergence prior.

Example 4.3 (Truncation family). Let g(x) be a strictly positive density 
on (0, ∞), and let                                                                   , where 
                    . Since                                      , the maximum dive- 
rgence prior is                                        which is the hazard rate of g(x).
In particular, this family corresponds to the one-sided truncated 
exponential distribution when g(x) = e-x. In this case, non-informative 
prior of a truncation parameter θ is
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that is, the uniform distribution. In this case, the Bayes estimator is 
easily calculated because the posterior distribution of θ is proportional 
to the likelihood function under the uniform prior (Ghosh et al. [21]). 
On the other hand, this family corresponds to the one-sided truncated 
normal distribution when                                                   . In this case, 
non-informative prior of a truncation parameter  θ is

with                                 . Since the prior (9) involves a non-linear  
function Ф (θ), when we actually compute the Bayes estimator under 
this prior (9), it may need to use the computational method like 
Markov chain Monte Carlo (MCMC) methods.

Remark 4.1. When we compute the posterior distribution based on 
non-informative prior, we often deal with improper priors and direct 
evaluation of these integrals over the entire parameter space is so 
difficult. An important point to note is that evaluation of all integrals 
is carried out over an increasing sequence of compact set Ki. For 
example, in the case of location exponential family of distribution 
in Example 4.1, the parameter space of θ is R and one can take the 
increasing sequence of compact sets [-i, i] (i ≥ 1). Evaluations of these 
integrals are usually carried out by taking a sequence of priors  πi with 
compact support Ki, and nally using sufficiently large i (Berger and 
Bernardo [6], Ghosh [14]).

Conclusion

The generalization of the result of Ghosal and Samanta [1] by 
using the α-divergence was given. We showed that the prior which 
maximizes the chi-square divergence (α = -1) does not generally exist 
in non-regular case. The comparison between regular and non-regular 
cases was also discussed. Finally, we gave some non-regular examples 
involving location, scale and truncation family of distributions. As 
a future plan, we need to construct non-informative priors in more 
complex situations. This paper can be extended to multiparametric 
family in the presence of nuisance parameters which involve the one-
sided truncated exponential family of distributions (see Akahira [22]).
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