
Abstract

In this paper a short overview on complex systems and their basic features, as well as the models and 
mathematical tools developed for their analysis, is given. This review is formed according to the related 
experience, activity and scientific interests of the author, namely focused on mainly in nonlinear time 
series analysis and statistics and their applications on different physical systems. In particular, rough 
outlines are given concerning the phenomenology of complex systems, e.g. far from equilibrium 
thermodynamics and Tsallis statistics, power law scaling, multi-fractality, low dimensional chaos, SOC, 
strange kinetics and anomalous diffusion and turbulent intermittency. In addition, a non-complete 
list of models, based on equations or agent based, is briefly described such as Kuramoto – Sivashinsky 
equation, cubic complex Ginzburg-Landau Equation, reaction-diffusion Equation, fractional equations, 
cellular automata, complex networks and artificial neural networks. A more extended review is provided 
concerning the nonlinear time series analysis complex systems, describing tools like mutual information, 
flatness coefficient, structure functions, Tsallis q-triplet, correlation dimension and Lyapunov exponents 
in the reconstructed phase space, which can provide valuable information for the complex system’s 
dynamics. Finally, applications of nonlinear time series analysis on various physical systems, such as 
earthquakes, Earth’s magnetosphere, solar plasma and solar wind, plastic deformation of materials, 
epilepsy, economical indices and DNA structure, are provided.
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Complex Systems

In general, even though there is no precise definition of complex 
systems, a complex system can be thought of as a collection of 
nonlinearly interacting elements summing up as a whole which 
is characterized by novel large scale effects. These effects arise as 
emergent properties related with nonlinear-complex behavior, which 
is the most distinguishing feature of complex systems [1]. A non-
exhaustive list of complex systems contains among others (in fact 
most systems can be considered as complex systems): geophysical 
processes (earthquakes), biophysics (brain dynamics, DNA), space 
plasmas (solar wind, solar flares, Earth’s magnetosphere), plastic 
deformation of materials, economy (stock indices), socio-technical 
systems and many others. The aforementioned complex systems, even 
though they are completely different in many aspects (e.g. different 
elements), share common characteristics such as:

1.	 They consist of a large number of interacting elements. This 
fact allows the description of these systems in two different 
hierarchical levels, namely microscopic and macroscopic. 

2.	 Their subsystems and their interactions are nonlinear.
3.	 They exhibit emergent behavior, namely a self-organizing 

collective behavior, which is not predictable from the knowledge 
of the element’s behavior.

4.	 These systems are open, namely they interact with their 
environment. This allows these systems to be driven to meta-
stable states far from equilibrium, where self-organization and 
collective behavior manifest.

These systems are usually spatially distributed systems [2]. They are 
of infinite dimension, since in order to be completely determined would 
require an infinite number of initial conditions. They can be thought 
of as a synthesis of many dynamical subsystems, each of which has 
its own dynamics. Their dynamical behavior varies in space and time 
leading to the emergence of spatio-temporal patterns [3]. In addition, 
since they are open systems, they can be considered as driven systems, 
exhibiting input-output (or equivalently load-unload) and threshold 
dynamics. In such systems, nothing happens since an external source  
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(driver) exceeds a specific value (threshold) [4]. However, since the 
system is driven far from equilibrium, its’ behavior  is characterized 
by fast unload processes in form of bursts, which produce avalanche 
events, giving rise to long range correlations in space and time. A 
representative paradigm of such a complex system is seismogenesis. 
In particular, earthquakes are caused by the deformation and 
sudden rupture of some parts of the Earth’s lithopshere. In this 
case the driving force is convection in the mantle which drives the 
plate tectonic motions. Under appropriate conditions, the energy 
stored in the Earth’s crust is released in a “bursting” mode, namely 
the earthquakes. Therefore, the interaction between the lithosphere 
and the mantle convection indicates the fact that plate tectonics and 
lithospheric internal dynamics, related with seismogenesis, constitute 
an input-output driven process [5].

This paper is summarized as follows: In chapter 2, the 
phenomenology and the basic characteristics of complex systems are 
presented, while in chapter 3 an overview of models used frequently 
in the study of complex systems is given. Chapter 4 is an introduction 
to extended nonlinear time series analysis presenting also some basic 
tools, while chapter 5 presents its application to some indicative 
complex systems. Finally, in chapter 6 a summary is given.

Phenomenology of Complex Systems

The phenomenology of the nonlinear behavior of complex 
systems includes emergent collective phenomena such as: far from 
equilibrium dynamics, power law scaling, multifractality, chaos, self 
organized criticality (SOC), intermittent turbulence, avalanches, 
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non-Gaussian statistics, anomalous diffusion etc [7], to name a few. In 
the following we will briefly describe the most significant of them:  

Input-Output, threshold dynamics

In general, the dynamics of an input-output complex system can be 
described by the differential equation [6]

                                                                                                                   (1)

The internal state of the system is described by the vector  X and the 
input U by the vector, while λ is the control parameter. For spatially 
distributed systems, X and U are fields X= X(r,t), U= U(r,t)  and their 
dynamics can be described by partial differential equations

In addition, in an input-output process the internal dynamics of the 
system is coupled with its environment and the output is a signal(s) 
z(t), which can be observed or measured. This signal includes valuable 
information for the internal dynamics as well as for the input dynamics 
according to the relation

Far from equilibrium thermodynamics 

The rich and interesting behavior of complex systems usually takes 
place in conditions far from equilibrium. In this paragraph we briefly 
describe the notion of entropy S since it is the most significant notion 
concerning thermodynamics.  We also introduce Tsallis entropy 
which is nowadays widely used in describing various complex 
systems’ statistics.

It is well known that in isolated systems, the energy is conserved 
and entropy is monotonically increases till it reaches its maximum, a 
state which is known as thermodynamic equilibrium

However, as we noted in the paragraph 2.1, most complex systems 
interact with their environment, namely they are open systems. In 
such systems, there exists a flow of entropy between the (sub)-systems 
of the system in study and its environment. In this case, the entropy 
change dS during a time interval dt, can be decomposed into two 
components [8],

where           (the entropy produced inside the system can never be 
negative) is the entropy production due to the irreversible processes 
inside the system (e.g. diffusion, heat conduction, chemical reactions, 
others) and      (it can attain negative values) is the entropy flux due 
to exchanges of energy or matter with the environment. As it can 
be seen, it is possible for the overall entropy to be negative in non-
equilibrium conditions, a fact that is connected with the emergence 
of ordered patterns called dissipative structures (something that it 
cannot be observed in closed systems).

These far from equilibrium, macroscopic, large-scale order 
structures, correspond dynamically to non-equilibrium (quasi)-
stationary states (NESS's) [9], which have the topology of a 
percolating fractal set. The transition to a NESS is related to enhanced 
nonlinearities and developing of instabilities into a collective mode. 
In the NESS the system is in a turbulent state, exhibiting complex

space distributions in the critical domain, while is fully determined by 
self organization processes which generate and maintain multi-scale 
correlations   [9].

The most commonly used entropic function used for describing the 
thermodynamics of the complex systems is that based on Boltzmann-
Gibbs (BG) statistics in which the entropy, for the discrete case, has 
the form of

where W is a set of discrete states, k is the Boltzmann constant pi is 
the probability of the (i) microscopic state of the system with

However, even though BG statistics-thermodynamics is used 
efficiently to study many interesting systems and their behavior, it fails 
to describe ubiquitous phenomena commonly observed in complex 
systems and their basic quantities, since these quantities exhibit long 
range interactions, non-Gaussian and non-exponential behavior, for 
example power law scaling and multi-fractality. In order to confront 
with this problem, Tsallis [10] introduced a new definition of entropy, 
which is generalization of BG definition of entropy. In particular, this 
non-extensive entropy Sq is given by

                                    , 

where q is the entropic index, which is related to the microscopic 
dynamics and characterizes the degree of non-extensivity. In addition, 
it can be proved that                                                   .

For two independent systems A and B (e.g.                              ) then

For all occasions            ,                                    and the cases of  co-
rrespond to super-additivity, additivity, sub-additivity, respectively.

As we will show in Chapter 5, a vast amount of papers nowadays 
concerning different complex systems showed that indeed Tsallis 
non-extensive statistical mechanics is appropriate for dynamical 
regions such as between regular motions and standard chaos, regions 
called edge of chaos, suggesting that the entropic index q could 
be a convenient manner for quantifying some relevant aspects of 
complexity, such as (multi)fractal and similar, hierarchical, statistically 
scale-invariant, structures.

Power law Scaling

Power laws are considered to be a trademark of complex systems 
and appear in many cases of different complex systems, such as the 
ones mentioned in first paragraph. In general, a quantity x obeys a 
power law if it derives from a probability distribution (PDF)

where a is a parameter of the PDF known as scaling exponent. If 
we plot Eq. 4 in log-log axes we will get a straight line, the slope of 
which is the value of a. This law is also known as Zipf ’s law or Pareto 
distribution [11]. Sometimes a power law distribution is also said to 
be a scale invariant distribution, because it remains the same under 
any scale transformation.

Citation: Iliopoulos AC (2016) Complex Systems: Phenomenology, Modeling, Analysis. Int J Appl Exp Math 1: 105. doi: https://doi.org/10.15344/ijaem/2016/105

       Page 2 of 11

d
( (t), (t), )

dt
= λ

X
f X U

z( , t) ( ( , t), ( , t))= Φr X r U r

k({ ( , t), ( , t)}, { ( , t), ( , t), ( , t)})
t

∂
= ∇ λ

∂

X
f X r U r X r U r r

0dS
dt

≥

i edS dSdS
dt dt dt

= +

0idS
dt

≥

edS
dt

1
lnW

BG i ii
S k p p

=
= − ∑

1
1

W

i
i

p
=

=∑

1
1

1

W
q
i

i
q

p
S k

q
=

−
=

−

∑
( )1; BGq S S∈ =

~ [1 ( 1) ln ]q
i i ip p q p+ −

A B A B
ij i jp p p+ =

( ) ( ) ( ) ( ) ( )
(1 )q q q q qS A B S A S B S A S B

q
k k k k k
+

= + + −

0qS ≥ 1, 1, 1q q q< = >

( ) ap x x−∝



Multi-fractality

Power laws are closely related to fractals [12]. Indeed, fractals are 
geometrical objects which cannot be described by Euclidean geometry 
since they possess a fractal dimension, they are characterized by self-
similarity and they do not have a specific length. Paradigms are the 
trees, the brain, the clouds, the coast-shores and many others. For 
the characterization of fractal objects different fractal dimensions 
were developed such as the Hausdorff dimension DH, the capacity 
dimension D0, the information dimension D1, the correlation 
dimension D2 etc. In particular, an object is said to be fractal if parts 
or segments N of the object scale as a power law with an exponent D

where A is a constant and the exponent D fractal dimension.

However in many cases a simple fractal dimension cannot describe 
a complex inhomogeneous geometrical object. Then, this complexity 
can be described efficiently by the concept of multi-fractality [13].  In 
this case, the fractal distribution attains different degrees of clustering 
in different regions in the object. Therefore, multi-fractality quantifies 
the degree of clustering and the intermittency in a fractal object. 
For characterizing a multi-fractal object S the generalized fractal 
dimension  is estimated, from which the other fractal dimension are 
derived also

where the function              is given by

where   P(i,ε)p is the qth  power of the probability that points of the 
object S, are in the  cell trying to “cover” the object S, with “spheres” 
of magnitude ε and N(ε) is the number of the “spheres”.  For a mono-
fractal object, D0=D1=D2=D3=...,  while for a multifractal object these 
dimensions are not the same.

Low Dimensional Chaos

As we mentioned before complex systems can exhibit rich 
behavior depending on the conditions and or/the control parameter. 
In particular, as, for example, a control parameter is increased and 
t→∞ the dynamical behavior of the system can be characterized 
in the phase space by limit cycles, low dimensional torus and low 
dimensional chaotic (strange) attractors. Low dimensional chaotic 
behavior was initially discovered on the behavior of a rather simple 
nonlinear system, described by three nonlinear differential equations, 
the well known Lorenz system [14].  In particular, low dimensional 
chaos describes the irregular-random behavior which emerges from a 
rigorous deterministic evolution of a low dimensional system in time, 
without the presence of any source of noise or external stochasticity. 
This aperiodic behavior manifests as sensitivity to initial conditions, 
namely nearby trajectories in the phase space diverge exponentially 
as time passes, excluding a long term prediction of the systems’ 
dynamics. This phenomenon is also called “butterfly effect”, is due to 
the nonlinear coupling between the variables of the system [15]. In 
the phase space, the strange attractor is a low dimensional confined 
set which is characterized by a fractal dimension, has self-similar 
properties and close trajectories diverge exponentially as time passes. 
Such a behavior can also be observed also in complex systems with 
many, practically infinite, degrees of freedom. Specific examples 
of such behavior are well studied in hydro-dynamics and refer to 
Rayleigh-Benard convection, Taylor-Couette flow and dripping faucet 
model [16-18].

Self Organized Criticality (SOC)

Another characteristic behavior of complex systems is the SOC 
behavior, which is strongly connected with power law scaling. This 
behavior is very different from the chaotic one we described in the 
previous paragraph, since in this case the system is high dimensional 
and is characterized by a zero maximum Lyapunov exponent. In 
particular, the theory of SOC by Bak, Tang και Wiesenfeld [19] was 
developed in order to explain the power law behavior of various 
systems such as earthquakes, solar storms, snow avalanches and 
many others. According this theory, dissipative spatially distributed 
systems far from equilibrium can physically evolve to critical point 
states without any characteristic temporal or spatial scale. In these 
critical points, the states of the systems are characterized by power 
laws of temporal correlations (e.g. flickering 1/f noise) and spatial 
correlations namely spatial fractal structures. In addition, these 
points are attractors for the system, are not being affected from 
various parameters of system and are solely due to the nonlinear 
interactions of the elements of the system. That is why it is called 
self organized. The fluctuations around the SOC state are called 
avalanches and characterized by long range correlations. Very small 
fluctuations can lead to avalanches of all sizes. Practically, the SOC 
mechanism involves slow accumulation of energy and fast unloading 
of this energy through avalanches. Finally, according to [19], in a 
SOC system the divergence of near-by trajectories follow a power 
law, instead of an exponential law which is characteristic of chaotic 
systems. In addition, the degrees of freedom are proportional to the 
size of the system, namely the system is high dimensional (practically 
infinite), in contrast with the low dimensional chaotic systems. The 
SOC attractor corresponds to a kind of weak chaos (zero maximum 
Lyapunov exponent) and the systems lives at the edge of chaos.

Strange Kinetics and Anomalous Diffusion (Transport) Processes 

Complex systems are often connected to strange kinetics which 
involve anomalous diffusion (transport) processes, both sub-linear 
and super-linear [20], giving rise to long range correlations which 
manifest as non-Gaussian (‘strange’) behavior of the system’s kinetic 
behavior near non-equilibrium stationary states [9]. A common 
way to measure transport (diffusion) processes is to study the time 
evolution of the mean square displacement of the particle

where D is the normalization constant having the meaning of the 
generalized transport coefficient and the exponent  classifies the type 
of transport: for a=1, the diffusion is normal, for a≠1, anomalous. 
In particular, for 0<a<1 there exists sub-diffusion and for a=1 super-
diffusion [22,23]. Normal diffusion is usually related to systems near 
thermodynamical equilibrium, where the trajectories of the particles 
are irregular but homogeneous, namely they consist of small similar 
distances, whereas anomalous diffusion is connected with systems far 
from equilibrium, where the trajectories are very inhomogeneous. 
This inhomogeneity, is due to the fact that particles are “trapped” 
into eddies where they stay for unknown time and in the following 
they go through big “flights”, meaning they travel long distances. In 
addition, anomalous diffusion can also be connected with power law 
distributions, called Levy distributions. In this case, the “flights” in 
anomalous diffusion processes are called Levy flights, the waiting times 
are described by Poissonian distributions, whereas the distribution of 
flights  λ(x)[23] are power law distributions according to the relation

                            (0<μ<1)
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Intermittency

An additional complex dynamical behavior in spatio-temporal 
extended driven systems is intermittency in turbulence. In particular, 
in classical fluid turbulence, scaling is often associated with a 
hierarchical structure of eddies extending over the inertial range 
[24, 25]. In this picture (called cascade model), the shear friction 
between these two distinct formations in the flow creates, in a little bit 
downstream, big eddies with the diameter about lin . The eddies flow 
downstream with the mean current producing smaller eddies one 
after another. As a result, a turbulent state is formed comprised of a 
mixture of various sizes of eddies from large to small (fully developed 
turbulence). The diameter of the eddies is given by

Here, n is the number of steps in the cascade producing smaller 
eddies in a stream. Therefore, turbulence is fluctuating with different 
rhythms, intermittently, which allow one to observe the intermittent 
burst of fluctuations. The cascade model, described previously, 
was introduced to account for these intermittent phenomena. The 
inertial range is the region where the energy of eddies are delivered, 
consecutively, to smaller eddies and the diameter of eddies satisfy the 
relationship  lin>>ln>>n. The highly intermittent character of turbulent 
phenomena manifested in complex systems, is also connected with 
inhomogeneity in fluctuations in different quantities of the turbulent 
system. This inhomogeneity is manifested as small-scale fluctuations 
of high intensity surrounded by extended areas of much lower 
fluctuations. Therefore, intermittency manifests itself via the burst-like 
behavior in temporal and spatial domains. In addition, intermittency 
is strongly related to non-Gaussian statistics and multifractality (since 
a Gaussian process is mono-fractal). Indeed, in this cascade picture of 
turbulence many multifractal models were developed such as the log-
normal model, p-model, Arimitsu and Arimitsu model [25]. 

Modeling Complex Systems

A nonlinear complex system can be studied in various ways, e.g 
either macroscopically studying its behavior, either mesoscopically 
studying the operation of its subsystems, either microscopically. 
Even though the study of complex systems requires a vast amount of 
information, the development of computers provided and provides 
great help in understanding complex systems. In this direction various 
theoretical and computational models were developed which can be 
classified into two great categories [1]:

→ Equation-Based
      o	 Partial Differential and Differential Equations
    o	 Maps
→ Agent Based, such as cellular automata and complex networks

Some representative examples of mean field type models are the 
Kuramoto – Sivashinsky equation [26], the complex Ginzburg-
Landau equation [27], the reaction diffusion-equation [28], and 
others. In the following we describe briefly some partial differential 
equations commonly used to model complex systems’ behavior. 

Kuramoto – Sivashinsky equations

This equation is widely studied in various phenomena such as 
plasma physics, flows, convection, chemical reactions and others, 
exhibiting a variety of nonlinear and turbulent states, such as low 
dimensional chaos, found in spatially extended systems [26]. Its form 
can be written as
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where h(X+t) can be interpreted as the height of a d-dimensional 
interface embedded in d+1 dimensions. 

Cubic complex Ginzburg-Landau equations 

Another well studied nonlinear equation is the cubic complex 
Ginzburg-Landau equation which can efficiently describe a vast 
variety of nonequilibrium phenomena in spatially extended systems, 
from nonlinear waves to second-order phase transitions, from 
superconductivity, superfluidity, and Bose-Einstein condensation to 
liquid crystals and strings in field theory [27]. It has the form

where A is a complex function of (scaled) time t and space x and the 
real parameters b and c characterize linear and nonlinear dispersion.

Reaction-Diffusion equations

These equations are widely applicable in many areas, including 
chemistry, biology, physics and engineering [28]. The simplest 
reaction-diffusion equation can be written as

where D  is the diffusion constant, and R is a nonlinear function 
representing the reaction kinetics. The nontrivial dynamics of these 
models arises from the competition between the reaction kinetics and 
diffusion and their solutions exhibit a rich behavior, similar to those 
found in non-equilibrium spatially distributed complex systems.

Fractals are closely related to complex systems. As we showed 
they are irregular over all length scales (non-integer dimensions) 
and this fact raises serious difficulties in studying them with usual 
calculus, which is unable in describing efficiently such structures and 
processes. Indeed, fractal functions do not possess first-derivative at 
any point. Therefore, new mathematical operators are needed and 
these can be found in fractional calculus [29]. In the last decade many 
fractional equations were developed, including diffusion equations, 
wave equations, relaxation equation (for a review see [30].

The most frequently used definition of a fractional integral of order 
p (p > 0) is the Reimann-Liouville’s definition,

with  n-1<q<n (n integer) as the nth integer of the (n-q)th fractional 
integral. The above formula is a direct generalization of Cauchy’s 
formula for repeated integration

When p is not an integer, the fractional derivative (20) is a non-
local operator since it depends on the lower integration limit a. In 
addition, when a = 0, the following scaling property exists

providing a link between fractional calculus and fractals and p 
being the fractal dimension [31], since the fractional operator shows 
the same scaling laws as the a-dimensional Hausdorff measure of a 
fractal set V, for e.g.                                          .
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Cellular automata

One class of models used to describe complex systems and their 
behavior, without the use of differential equations is cellular automata 
(CA), which are examples of mathematical systems constructed from 
many identical components, each simple, but together capable of 
complex behavior [32,33]. A 1-D CA consists of a line of sites (“cells”), 
with each site carrying a value of (0, ..., k-1). The state of the CA is 
completely specified by the values of the variables ai at each site i. The 
evolution of the CA takes place in discrete time steps and the variables 
are updated simultaneously based on the values of the variables in the 
neighborhood according to a deterministic rule

The sites at microscopic level may represent points for example 
in a crystal lattice, while at macroscopic level a region of many 
molecules or others, depending on the scale and the system in study. 
In general, the overall behavior of CA can be extremely complex, 
since different rules yield different patterns that differ in detail but are 
similar in a statistical sense, exhibiting spatially homogeneous states, 
periodic structures, chaotic behavior, and complicated localized or 
propagating structures. The CA are used in modeling many physical 
complex systems such as earthquakes [19], brain dynamics [34] and 
many others.

Complex networks

Another promising tool for understanding complex systems and 
their behavior is complex network and network theory [35,36].  
Examples of complex networks are systems composed by a large 
number of highly interconnected dynamical units, such as the Internet 
and the World Wide Web, neural networks, social interacting species, 
to name only a few. Complex networks can be studied either as graphs 
whose nodes represent the dynamical units, and whose links stand for 
the interactions between them, either as a dynamical system learning 
how a large ensemble of dynamical systems that interact through a 
complex wiring topology can behave collectively. Mathematically, 
a network is represented by a graph, consisting of a set of N nodes 
which are connected with a set of links. When a network is random, 
then the nodes are linked in a completely random manner. However, 
complex networks usually are far from random, often related to 
organizing principles. There are several measures to characterize 
network topology such as the clustering coefficient ci, the neighbor 
connectivity knn, but the simplest is the degree distribution p(k), 
which is the probability for finding a node i with degree k (number 
of links associated with it) in the network [37]. When the degree 
distribution is a power law, the network is called scale-free, which 
are of high interest nowadays, since, as we mentioned, many complex 
systems exhibit power law behavior, such as brain dynamics [38] and 
earthquakes [39].

Artificial Neural Networks (ANNs)

Very often complex systems are connected with a really vast 
amount of data, such as time series, images, various parameters, other 
spatiotemporal variables etc. For instance, for studying brain dynamics 
different variables are available such as interviews of patients and 
family members, physical exams, laboratory and cognitive tests and 
neurological exams, including magnetic resonance imaging (MRI) 
or computerized tomography (CT), positron emission tomography 
(PET) and functional magnetic resonance imaging (fMRI), as well 
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as electroencephalography (EEG) time series.  For the analysis and 
utilization of all this information advance techniques and algorithms 
are being developed summarized as machine learning. In particular, 
machine learning deals with algorithms that facilitate pattern 
recognition, classification and prediction, based on models derived 
from existing data [40]. Such computer algorithms included in 
machine learning arsenal are artificial neural networks (ANNs), which 
can recognize hidden patterns and relations of input data, model 
nonlinear complex functions, manage data and learn, improving 
their overall performance. Usually, ANNs consist of neurons or nodes 
which are grouped into layers: an input layer, one or several hidden 
layers and an output layer. The layers are connected with transfer 
functions and weights which are trained and initialized. A typical 
artificial neuron can be modeled as [41]: if we consider different 
inputs  in a neuron, then the output signal O is given by:

where wj is the weight vector, and the function f(net) is referred to as 
an activation (transfer) function. The variable net is defined as a scalar 
product of the weight and input vectors

where T is the transpose of a matrix, and, in the simplest case, the 
output value O is computed as

where θ is called the threshold level; and this type of node is 
called a linear threshold unit. Paradigms of neural networks are [41] 
the radial basis functions (RBF) which use radial basis functions as 
activation functions, the probabilistic neural network (PNN) which 
uses a kernel-based approximation to for classification problems, the 
self organized maps which are used for dimensionality reduction of 
the data input. Applications of ANNs can be found in many scientific 
fields for e.g. the wind power prediction [42], in cancer prediction and 
prognosis [43], geomagnetic activity [44], earthquakes [45], etc

Nonlinear Time series analysis and Statistics

In this section we present a summary of algorithms and methods 
commonly used in the study of complex systems, based on nonlinear 
time series analysis. In particular, the main purpose of experimental 
time series analysis is to extract significant information for the 
underlying dynamics of the observed signal. Modern nonlinear time 
series analysis includes [46]:

i. Computation of Phenomenological Characteristics

(a) Autocorrelation Coefficient and Power Spectrum (Linear  
            correlations, periodicities, scaling laws

(b) Mutual Information (Linear and Nonlinear Correlations)

(c) Probability Distributions (Power Laws)

(d) Hurst exponent (Persistence, anti-persistence, white noise)

(e) Flatness Coefficient F (Intermittent turbulence)

(f) Structure Functions (Turbulence, intermittency exponent)

(g) Phase portrait (Low Dimensionality)

(h) Entropy, energy, multifractal structures

(i) Estimation of q-Tsallis Statistics
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ii. Computation of Geometrical and Dynamical characteristics in the 
reconstructed state space

(a) Correlation Dimension (Degrees of freedom)

(b) Generalized Dimension (Multifractals)

(c) False Neighbors (Degrees of Freedom)

(d) Singular values spectrum (SVD components, filtering)

(e) Maximum Lyapunov Exponent (Sensitivity in initial conditions)

(f) Power Spectrum of Lyapunov Exponents 

iii. Testing of Null Hypothesis in order to discriminate between low 
dimensional chaotic dynamics and linear high dimensional stochastic 
dynamics

(a) Surrogate data

(b) Discriminating statistics

iv. Singular Value Analysis in order to

(a) Estimate Degrees of Freedom

(b) Filter signals from White or Colored Noise

(c) Search for input-output dynamics

In the following we will present more analytically some of the most 
important tools of modern nonlinear time series analysis:

 
The mutual information

The mutual information can be used to search for nonlinear 
correlations between the values of an experimental signal.  In general, 
the mutual information   between two observables, A and B is given 
by the relation

where H(A) is the amount of average information gained from a 
measurement of A and H(A/B) is the amount of information of A 
given that B is known. If this relation is applied to time series, it leads 
to [47]:

If the samples {B = x(i)} and {A = x(i-τ)} are statistically independent 
then the mutual information will vanish for this value of τ. Thus, 
knowledge of the second sample cannot be gained by knowing the 
first. On the other hand, if the first sample uniquely determines 
the second sample then I(τ)=Imax, which is true when τ = 0. For a 
statistically independent signal, the mutual information is zero for 
τ>0. 

Flatness coefficient F

The intermittent nature of a complex system’s dynamics can be 
investigated through the Probability Density Functions (PDF) of a set 
of two-point differenced time series of an original time series  δBτ(t) 
= B(t + τ) - B(t), which can be any physical quantity. The coefficient F 
corresponding to the flatness values of the two-point difference for the 
observed time series is defined as [48]:
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The coefficient F for a Gaussian process is equal to 3, while deviation 
from this value imply non-Gaussian behavior and intermittency. The 
parameter τ represents the spatial size of the “eddies”, which contribute 
to the energy cascade process.

Structure functions

Another way to search for intermittency, is the generalized structure 
functions, which are the various order moments of the fluctuating 
quantity, namely a time series,

where <...>   is the ensemble average of experimental time series. 
The structure functions should obey a power law as a function of lag 
time τ

The scaling index   as function of the moment p, can be used to 
characterize the turbulent field [49], since deviation of J(p) from p/3 
implies non-Gaussian behavior and intermittency.

The Tsallis q-triplet estimation

The most basic of Tsallis indices qsensitivity, qrelaxation, qstationary, known 
also as Tsallis q-triplet [50], constitute the best empirical quantifier of 
non-extensivity. In the following we describe briefly the underlying 
mathematical framework concerning Tsallis q-triplet:

Tsallis index qsen.

This index is related to q-exponential sensitivity to initial conditions 
and to the rate of entropy production of the system in study. The   qsen 
index is given by

The amax and  amin values correspond to zeros of multifractal spectrum 
function  , which is estimated by the Legendre transformation f(a) = 
qa - (q-1)Dq , where  describes the Rényi generalized dimension of the 
solar wind time series according to 

                                                                    for r→0

Tsallis Index qstat.

The estimation of Tsallis q entropic index, referred to as stationary q 
= qstat, is related to the size of the distribution tail and is usually based 
on Tsallis q-Gaussian distributions which can describe metastable 
stationary states of the system. The Tsallis q-Gaussian distribution 
[51] is given by

where eq = [1+(1-q)x]1/(1-q) is the q-exponential, β is a positive 
number and Cq is a normalization constant, namely                 . 
Depending on the q value, Cq has the following forms
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For q < 1, the support of Gq(β; x)  is compact since this density 
vanishes for

Tsallis Index  qrel.

This index is related to relaxation processes of the system. It is given 
by qrel = (s-1)/s , where s is the slope of the log-log plotting of mutual 
information I(τ) given in paragraph 4.1 or the autocorrelation 
coefficient.

The reconstructed state space

Modern analysis of complex dynamical systems is also based on the 
reconstructed dynamics for autonomous and purely deterministic 
systems with n dynamical variables, according to which a delay 
reconstruction map Φ is considered which maps the state  X into the 
m – dimensional delay vectors

 
This map is an embedding when m ≥ 2n+1  , where   describes 

the dynamical flow underlying the observed signal and n is the 
dimension of the manifold of the system phase space dynamics [52]. 
The embedding Φ is a diffeomorphism which maps the orbits of 
the original state space in the reconstructed space, preserving their 
orientation and dynamical and geometrical characteristics, such as 
Lyapunov exponents and dimension of attractors respectively. For the 
estimation of the best reconstruction time τ, the first local minimum 
of the autocorrelation coefficient or the mutual information, as well as 
higher values of τ for which the estimated geometrical and dynamical 
characteristics of the reconstructed attractor remain invariable, can 
be used.

In the reconstructed state space we can also use the SVD (Singular 
Value Decomposition) analysis in order to: (i) filter the time series 
and (ii) decompose the series in its SVD reconstructed components 
which can be used for the detection of the underlying dynamics. 
Singular value analysis is applied to the trajectory matrix X estimated 
by the reconstructed state space [53] The SVD analysis permits the 
reconstruction of the original flow, in terms of n eigenvectors Vi, 
known as SVD reconstructed components corresponding to the 
spectrum of the singular values {σi} . The d largest ones of them 
correspond to the Vi eigenvectors, i =1,2,…d, that are sufficient for an 
accurate description of the underlying dynamics. 

Correlation dimension

The correlation dimension in the reconstructed phase space is given 
by

Int J Appl Exp Math                                                                                                                                                                                                IJAEM, an open access journal                                                                                                                                          
                                                                                                                                                                                                                                    Volume 1. 2016. 105  

       Page 7 of 11

of the dynamical trajectories of the system in state space, where   
Cm(r) is the correlation integral of the trajectory  and Dm  is its slope. 
The correlation integral is given by

The low value saturation  D = lim Dm of the slopes of the correlation 
integrals is related to the number d of fundamental coordinates of the 
internal dynamics. The method of Theiler [54] is also used to exclude 
W time correlated states in the correlation integral estimation, thus 
discriminating between the dynamical character of the correlation 
integral scaling and the low value saturation of slopes characterizing 
self-affinity (or crinkliness) of trajectories in a Brownian process. 
When the dynamics possesses a finite (small) number of degrees of 
freedom, we observe saturation to low values  D of the slopes  Dm 
obtained in (38) for a sufficiently large embedding m. The dimension 
of the attractor of the dynamics is then at least the smallest integer 
larger than D or at most , according to Takens’ theorem.

Lyapunov Exponents

The Lyapunov spectrum is of high importance as it measures 
the rate of convergence or divergence of close trajectories in all 
d directions of the phase space, giving further evidence for the 
possible low dimensional and chaotic character of the attractor in 
the reconstructed phase space. In particular, positive exponents 
correspond to instability, negative exponents to convergence, while 
at least one zero exponent must exist for the expansion along the 
trajectory. The Lyapunov spectrum is found by the derivative matrix 
of the dynamics in the reconstructed state space. The spectrum of 
Lyapunov exponents ordered as the  λ1 ≥  λ1 ≥... ≥λd by the relation 
[55].

where Ai is the local approximation of the derivative matrix DF 
at the reconstructed trajectory points xr(ti), i = 1, 2,...,N of the d – 
dimensional reconstructed state space and   is a corresponding set of 
orthogonal vectors at the points xr (ti).

Surrogate data analysis

The method of surrogate data is used to distinguish between 
linearity and nonlinearity as well as between chaoticity and pure 
stochasticity, since a linear stochastic signal can mimic a nonlinear 
chaotic process after a static nonlinear distortion, since they can 
mimic the geometrical or dynamical characteristics of the original 
data [56,57]. Therefore, they can be used for the rejection of every null 
hypothesis that identifies the observed low dimensional chaos as a 
purely non – chaotic stochastic linear process. In particular, surrogate 
data can be constructed according to [58], to mimic the original data, 
regarding their autocorrelation, power spectrum and their probability 
distribution.

In order to distinguish a nonlinear deterministic process from 
a linear stochastic one, we use as discriminating statistic a quantity 
L derived from a method sensitive to nonlinearity, for example the 
correlation dimension, the maximum Lyapunov exponent, the mutual 
information etc. The discriminating statistic L is then calculated for 
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the original and the surrogate data and the null hypothesis is verified 
or rejected depending on the “number of sigmas”

where μsur and  σsur are the mean value and standard deviation of L 
taken from the surrogate data and μobs is the mean value of L derived 
from the original data. For a single time series, μobs is the single L 
value [56]. The significance of the statistics is a dimensionless quantity 
and we report it in terms of units of Sigma “sigmas”. When Sigma 
takes values higher than 2 – 3 then the probability that the observed 
time series does not belong to the same family with its surrogate data 
is higher than 0.95 – 0.99, correspondingly.

Applications of Nonlinear Time Series Analysis in Various 
Complex Systems

In the following we present recent representative studies (a non-
exhaustive list, mostly the ones the author of this paper was involved 
with), concerning the application of nonlinear time series algorithms, 
described in previous paragraphs, in various physical systems, such as 
seismogenesis, plastic deformation of materials, space plasmas, brain 
dynamics, economy and DNA (see also [59]).

Seismogenesis

In a series of papers [5, 60-62] results were presented concerning 
seismogenesis in different Hellenic regions (land and sea of Greece), 
applying nonlinear analysis to various earthquake time series, such as 
magnitude, inter-event times, longitude and latitude time series. For 
the analysis, the model of the dripping faucet was used as a physical 
interpretation of the seismic process. In this model, the loading 
rate m(t) of mass in the mechanistic dripping faucet model of Shaw 
corresponds to the transfer of stress in the fault system by the mantle 
and plate tectonic dynamics (the external driver of the system), while 
mass unloading corresponds to earthquakes, as releases of the elastic 
strain energy stored along a fault. The dripping faucet similarly to the
earthquake process can be understood as a local, driven, threshold 
process.  

Geometrical and dynamical characteristics were then estimated in 
the reconstructed state space, such as the singular value spectrum, the 
correlation integrals and their slopes and the maximum Lyapunov 
exponent, for the original seismic time series and its SVD components. 
In addition, in order to exclude the case of linear stochastic dynamics 
that mimic low dimensional chaos, the authors compared their results 
with an efficient number of surrogate data. Tsallis statistics were also 
exploited to study the non-Gaussian character of the time series. Their 
results, showed that the spatio-temporal dynamics of earthquakes are 
of low dimensional, non-extensive, chaotic character, indicating that 
seismic events do not occur randomly in space and time and supported 
the hypothesis of seismogenesis, as an active chaotic walker, which 
corresponds to a point process realized in the continuously extended 
Hellenic lithospheric system. In addition, the nonlinear analysis of 
magnitude time series showed that an independent high dimensional 
SOC dynamics are connected with the energy release process.  The 
above concepts showed that earthquakes can be understood via the 
general theory of statistical physics for dynamical processes of far 
from equilibrium phase transitions applied to distributed fault‘s 
systems. 
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Space plasmas

Space plasmas dynamics are also another example of complex 
distributed systems exhibiting complex behavior [63]. Studies 
concerning the nonlinear analysis of various time series derived 
from Earth’s magnetosphere, solar wind, solar flares and sunspots 
others revealed the complex behavior of those systems, which include 
among others chaotic, SOC and intermittent turbulent dynamics, 
non-equilibrium phase transitions, as well as Tsallis non-Gaussian 
statistics [53, 64-71].

In particular, Earth’s magnetosphere is strongly coupled externally 
to the solar wind plasma flow revealing dissipative internal non-
equilibrium and non-linear dynamics, related with the development of 
magnetospheric superstorms during which strong plasma flows can be 
developed along the magnetotail. For example, in [64,68], the analysis 
of AE index time series and bulk plasma velocity measurements (Vx 
component) of both calm and storm periods, revealed that during 
the development of a superstorm event, there is a phase transition 
of magnetopsheric dynamics from high dimensional (SOC state) 
to low dimensional and chaotic (chaos state), with a corresponding 
strengthening of the intermittent turbulent non-Gaussian character 
of the dynamics. The corresponding statistics can be well described 
within the theoretical framework of Tsallis statistics. 

Similarly, the solar plasma dynamics is a prototype of non-linearity 
and non-integrability, exhibiting non-Gaussian turbulent and chaotic 
dynamics as well as spatial multifractal topology of the solar magnetic 
field. Solar activity is related to two different processes, corresponding 
to different regions of the solar system with different physical 
characteristics, namely sunspots in the photosphere and solar flares at 
the base of solar corona. The analysis of sunspot index and daily solar 
flares index time series [65-67, 69] revealed the coexistence of two 
clearly discriminated physical processes underlying the solar activity, 
corresponding to SOC and Chaos processes, related to photospheric 
and sub-photospheric zones activity of the Solar system. Also, strong 
evidence for intermittent solar turbulence as well as for non-extensive 
statistical processes, according to Tsallis q–statistics, was found. 

Another example of complex system is solar wind plasma. It 
consists of ionized and magnetized gas, composed mainly by protons, 
electrons, alpha particles and heavier ions, continuously flowing away 
from the solar corona in all directions pervading the interplanetary 
space. Its dynamics is also a nonlinear, far from thermodynamical 
equilibrium in which the development of hierarchical, self-organized 
and long-correlated dynamical states is possible. Indeed in recent 
studies [70-71] the non-extensive and non-Gaussian character of the 
solar wind plasma was verified, indicating the existence of multi-scale 
strong correlations from the microscopic to the macroscopic scales. 
These long range correlations are significantly enhanced during the 
phase transition from calm to “shock” events, as the analysis of Tsallis 
q-triplet and other nonlinear quantities revealed.

Unstable plastic flow in deformation of materials

Plasticity in material’s deformation is a highly complex 
spatiotemporal phenomenon. The complexity of the underlying 
dynamics is mainly connected to complex geometric objects, 
dislocations, which not only act as carriers of deformation, but they 
move, interact and evolve in a nonlinear way, resulting in a non-
uniform and non-isotropic, non-random spatial distribution [72]. 
One representative paradigm of such an unstable plastic flow is the
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Portevin–Le Chatelier (PLC) effect, which is manifested when some 
dilute alloys undergo tensile tests in specific regimes of strain rate and/
or temperature and is connected with serrations in stress/strain graphs 
and shear bands in material’s surface. Recently, [73] conducted Tsallis 
statistical analysis for various stress serration time series of Cu-15%Al 
alloys corresponding to different deformation temperatures and PLC 
types (A, B, C), estimating Tsallis’ entropic index                    (stat denotes 
stationary states). The results revealed the non-Gaussian (Tsallis 
q-Gaussian), nonextensive, sub-additive character of the underlying 
dynamics of the PLC type-A bands (q > 1) indicating dynamics at 
the edge of chaos, with global long range correlations and power law 
scaling. Similarly, for PLC type B bands, a Tsallis q-Gaussian, non-
extensive, super-additive statistical profile was found with q < 1, 
while for the PLC type C bands, a stochastic, near Boltzmann-Gibbs 
(BG) statistical character was verified indicating Gaussian dynamics 
with short (weak) range correlations. These results verify and extend 
previous studies [e.g.74] which classified type B and type A PLC bands 
underlying dynamics to distinct dynamical behavior, namely chaotic 
behavior for the first and self organized critical (SOC) behavior for 
the latter.

Complex behavior is also manifested in ultra fine grained (UFG) 
materials, in which the deformation mechanisms, involve grain 
rotation and grain boundary sliding, dislocation nucleation, emission 
and absorption in GBs, twinning and faulting as well as diffusional 
creep and grain boundary migration [75]. In a recent study [76], 
statistical features of serrations, which are observed in low strain 
rates, as well as the spatial distribution of extensive shear bands 
which are formed in high strain rates of an UFG alloys, were studied. 
The analysis was based on Tsallis nonextensive statistics and fractal 
theory. The results demonstrated that plastic flow that the statistics 
of serrations and shear bands’ formation are connected with Tsallis 
q-Gaussians (q>1) and fractality [Iliopoulos et al., 2015b].

Brain dynamics, Economics, DNA

The human brain can also be modeled as a driven nonlinear 
threshold system, comprised of nonlinear units or cells, generating 
spatial complex networks, where each cell operates when the electrical 
potential or current reaches a threshold value.  In [34] a phase transition 
process of brain activity was revealed from a high dimensional 
SOC state during the health period to a gradually developed low 
dimensional chaotic state corresponding to epileptic state. In addition, 
a cellular Automata (CA) model was developed which simulated 
faithfully the brain behavior during healthy and epileptic states.

Economics is also a very complex system. Indeed, various economic 
systems can exhibit ubiquitous complex dynamics evidenced by large 
amplitude and aperiodic fluctuations in economic and financial 
variables, including foreign exchange rates, gross domestic product, 
interest rates, production, stock market prices and unemployment. 
The presence of fluctuations in economic and financial systems 
are indications that these systems are driven far away from the 
equilibrium where non-linearity gives rise to complex system’s 
behavior [77,78]. For example, the statistical analysis of two time stock 
market time series, namely Standard & Poor’s 500 (S & P) 500 and 
TVIX [77], based on Tsallis non-extensive statistics and in particular 
the estimation of q – triplet, showed the non-Gaussian, non-extensive 
statistical character of the time series, indicating multi-fractal 
phase space dynamics, which can be described faithfully by Tsallis 
distribution functions. The non-extensive character of the underlying 
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dynamics is related to the existence of multi-scale long range 
interactions in space and time. In addition, the detailed analysis of S & 
P index unraveled the existence of non-equilibrium phase transitions 
depicted clearly in the variations of Tsallis q-triplet values, which 
are connected with non-equilibrium stationary states of economical 
dynamics derived from processes of strong self organization.

DNA is another example of complex system, since it can be thought 
of as a growth or aggregation phenomenon, which results in a fractal 
cluster with power-law correlations over wide ranges of length scales, 
resulting in long-range correlations of nucleotides in DNA sequences. 
In a recent study [79] applied an extensive nonlinear algorithm in DNA 
sequences of Major Histocompatibility Complex (MHC) showing that 
the DNA complexity and self-organization can be related to fractional 
dynamical nonlinear processes with low dimensional deterministic 
chaotic and non-extensive statistical character. 

Summary and Conclusions

Complex systems and their behavior are found in many fields, such 
as scientific, engineering and social. These systems are much more 
than a sum of their parts and they are connected to the emergence 
of collective behavior through self-organization, e.g. the spontaneous 
formation of temporal, spatial or functional structures. They are also 
nonlinear, inhomogeneous, and far from equilibrium as well as adaptive 
as they evolve and may contain self-driving feedback loops. The 
collective behavior of the whole system cannot be simply inferred from 
the understanding of the behavior of the individual components [80]. 

Interesting features commonly emerged in complex systems such 
as far from equilibrium thermodynamics and Tsallis statistics, power 
law scaling, multi-fractality, low dimensional chaos, SOC, strange 
kinetics and anomalous diffusion and turbulent intermittency. For 
describing the complex behavior of such systems, new modeling tools 
are generated. A non-exhaustive list includes models based either 
on equations, for example Kuramoto – Sivashinsky equation, cubic 
complex Ginzburg-Landau Equation, reaction-diffusion Equation, 
fractional equations etc, or agent based such as cellular automata, 
complex networks, artificial neural networks (for further reading 
see also [81]). In addition, for the analysis of experimental data 
(time series) of complex systems new concepts and sophisticated 
mathematical tools are developed, roundup as nonlinear time 
series analysis, in order to extract significant information for the 
underlying dynamics of the observed signals. Tools like mutual 
information, flatness coefficient, structure functions, Tsallis q-triplet, 
correlation dimension and Lyapunov exponents in the reconstructed 
phase space can provide valuable information for the system’s long 
range correlations, intermittent turbulence features, non-Gaussian 
statistics, degrees of freedoms and sensitivity to initial conditions. 

As we presented in this paper, there is experimental evidence of 
intriguingly similar quantitative features traced from nonlinear 
time series analysis of data derived from different complex systems, 
such as earthquakes, Earth’s magnetosphere, solar plasma and solar 
wind, plastic deformation of materials, epilepsy, economical indices 
and DNA structure. These results strongly support the concept of 
universality, namely that systems arising in different disciplines 
can share common characteristics and behavior, irrespective of the 
underlying microscopic mechanisms responsible for the observed 
complex behavior [82]. However, much remains to be explored. 
Various theoretical concepts and mathematical tools, among others, 
are now in intensive active research regarding complex systems, based 
on non-extensive statistical mechanics, fractal topology, turbulence 

statq q≡



Citation: Iliopoulos AC (2016) Complex Systems: Phenomenology, Modeling, Analysis. Int J Appl Exp Math 1: 105. doi: https://doi.org/10.15344/ijaem/2016/105

theory, strange dynamics, percolation theory, anomalous diffusion 
theory and anomalous transport theory, fractional dynamics and 
non-equilibrium phase transition theory [83 and refs therein]. The 
advances in these theories will provide new insights in the description, 
analysis and understanding in the complexity of physical, engineering 
and social systems, leading to uncertainty and unpredictability 
reduction, which are fundamental aspects of these systems.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The author gratefully acknowledges Prof. G.P. Pavlos, Dr. M. 
Athanasiou, Dr. L.P. Karakatsanis, E. Pavlos and M. Xenakis for 
various useful discussions on complexity theory and complex systems.

References

1.	 Ninno B (2004) Modelling Complex Systems, New York Inc : Springer.
2.	 Cai D, McLaughllin DW, Shatah J (2001) Spatiotemporal Chaos in Spatially 

Extended System, IMACS  55: 329-340. 
3.	 Addison Paul S (1997) Fractals and Chaos, IOP.
4.	 Rundle JB, Klein W, Gross S, Ferguson CD (1997) Traveling density wave 

models for earthquakes and driven threshold systems. Phys Rev E 56: 
293- 307.

5.	 Pavlos GP, Iliopoulos AC, Athanasiou M (2007) Self Organized Criticality 
or / and Low Dimensional Chaos in Earthquake Processes. Theory 
and Practice in Hellenic Region. Eds. Tsonis A. and Elsner J. Nonlinear 
Dynamics in Geosciences, Springer, pp. 235-259.

6.	 Abarbanel HD, Brown R, Sidorowich JJ, Tsirming LS (1993) The analysis of 
observed chaotic data in physical systems. Rev Mod Phys 65: 1331-1392.

7.	 Pavlos GP, Iliopoulos AC, Tsoutsouras VG, Karakatsanis LP, Pavlos EG 
(2010) Spatiotemporal Chaos in Distributed Systems: Theory and Practice, 
in Chaotic Systems: Theory and Applications, Eds. Skiadas C.H. and 
Dimotikalis I., pp. 268-284, World Scientific.

8.	 Nicolis G (1977) Self Organization in nonequilibrium systems, John Wiley, 
1977.

9.	 Zelenyi LM, Milovanov AV (2004) Physics-Uspekhi 47: 749-788.
10.	 Tsallis C (2009) Introduction to Nonextensive Statistical Mechanics, 

Springer.
11.	 Newman MEJ (2003) Power Laws, Pareto Distributions and Zipf's Law. 

Contemporary Physics 46: 323-351.
12.	 Mandlebrot BB (1983) The fractal geometry of nature. New York:  Freeman.
13.	 Mandelbrot BB (1989) Multifractal Measures, Especially for the 

Geophysicist. PAGEOPH 131: 6-42.
14.	 Lorenz EN (1963) Deterministic nonperiodic flow. Journal of the 

Atmospheric Sciences 20 : 130-141.
15.	 Ivancevic VG, Ivancevic TT (2007) High Dimensional Chaotic and Attractor 

Systems, Ed. Tzafestas S.G., Springer.
16.	 Yanagita T, Kaneko K (1995) Rayleigh–Benard convection, patterns, 

chaos, spatiotemporal chaos and turbulence, Physica D 82: 288-313. 
17.	 Buzug Th, Stamm J, Pfister G (1992) Fractal Dimensions of strange 

attractors obtained from the Taylor-Couette experiment. Physica A 191: 
559- 563.

18.	 Neda Z, Bako B, Rees E (1996) The dripping faucet revisited CHAOS 6: 
59-62.

19.	 Bak P, Tang C, Wiesenfeld K (1987) Self-Organized Criticality: An 
Explanation of 1/f Noise, Phys. Rev. Lett 59: 381-384.

20.	 Shlesinger MF, Zaslavsky  GM, Klafter J (1993) Strange Kinetics, Nature 
363.

21.	 Schwammle V, Curadoa EMF, Nobre, FD (2009) Dynamics of normal and 
anomalous diffusion in nonlinear Fokker-Planck equations.  Eur Phys J B 
70: 107-116. 

22.	 Rezende GR, Lapas LC,  Oliveira FA (2009) Complexity perspectives: an 
anomalous diffusion approach, Journal of Computational Interdisciplinary 
Sciences 1: 105-111.

Int J Appl Exp Math                                                                                                                                                                                                IJAEM, an open access journal                                                                                                                                          
                                                                                                                                                                                                                                    Volume 1. 2016. 105  

       Page 10 of 11

23.	 Metzler R, Chechkin AV, Klafter J (2009) Levy statistics and Anomalous 
Transports: Levy flights and Subdiffusion, Encyclopedia of Complexity and 
Systems Science, Ed. E. Meyers and A. Robert, 5218-5239, Springer.

24.	 Kolmogorov A (1941) Dokl. Akad. Nauk SSSR 31, 538.
25.	 Arimitsu T, Arimitsu N (2005) Multifractal analysis of the fat-tail PDFs 

observed in fully developed turbulence. Journal of Physics: Conference 
Series 7: 101-120.

26.	 Pandit R (1993) Universal Properties of the Two-Dimensional Kuramoto-
Sivashinky Equation. Phys Rev Lett 71: 12-15.

27.	 Aranson IS, Kramer L (2002) The world of the complex Ginzburg-Landau 
equation, Review of Modern Physics 74: 99-143.

28.	 Vastano JA, Russo T, Swinney HL (1990) Bifurcation to spatially induced 
chaos in a reaction-diffusion system. Physica D 46: 23-42.

29.	 Carpinteri A, Mainardi F (1997)  Fractals and fractional calculus in 
continuum mechanics, Wien: Springer.

30.	 Mainardi F (1996) Fractional relaxation-oscillation and fractional diffusion-
wave phenomena, Chaos, Solitons and Fractals 7: 1461-1477.

31.	 Carpinteri A, Cornetti P, Kolwankar KM (2004) Calculation of the tensile and 
flexural strength of disordered materials using fractional calculus, Chaos, 
Solitons and Fractals 21: 623-632.

32.	 Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod 
Phys 55: 601-644.

33.	  S Wolfram (1984) Cellular automata as models of complexity.  Nature 311: 
419-424.

34.	 Tsoutsouras V, Sirakoulis G, Pavlos G, Iliopoulos A (2012) Simulation 
of Healthy and Epileptic form Brain Activity using Cellular Automata. 
International Journal of Bifurcation and Chaos 22: 1250229.

35.	 Newman MEJ (2003) The structure and Function of Complex Networks. 
SIAM Review 45: 167-256. 

36.	 Boccalettia S, Latora S, Moreno Y, Chavez M, Hwang DU (2006) Complex 
networks: Structure and dynamics. Phys Rep 424: 175-308. 

37.	 S Thurner (2005) Nonextensive statistical mechanics and complex scale-
free networks, Europhysics News 36: 218-220.

38.	 K Spiliotis, Siettos C (2011) A timestepper-based approach for the 
coarse grained analysis of microscopic neuronal simulators on networks: 
Bifurcation and rare-events micro- to macro-computations, Neurocomputing 
74: 3576-3589.

39.	 Daskalaki E, Papadopoulos GA, Spiliotis K, Siettos C (2014) Analysing the 
topology of seismicity in the Hellenic arc using complex networks. Journal 
of Seismology 18: 37-46.

40.	 Tarca AL, Carey VJ, Chen X, Romero R, Draghici S (2007) Machine 
Learning and Its Applications to Biology. PLoS Computational Biology 3: 
953-963.

41.	  Abraham A (2005) Artificial Neural Networks in Handbook of Measuring 
System Design, Wiley. 

42.	 Sideratos G, Hatziargyriou ND (2007) An advanced statistical method for 
wind power forecasting. IEEE Transactions on Power Systems 22: .

43.	 Cruz JA, Wishart DS (2006) Applications of Machine Learning in Cancer 
Prediction and Prognosis. Cancer Inform 2: 59-77.

44.	 Voros Z, Jankovicova D (2002) Neural network prediction of geomagnetic 
activity: a method using local Holder exponents, Nonlinear Processes in 
Geophysics 9: 425-433.

45.	 Reyes J, Morales-Esteban A, Martínez-Álvarez F (2013) Neural networks 
to predict earthquakes in Chile, Applied Soft Computing 13: 1314-1328.

46.	 Pavlos GP, Iliopoulos AC, Karakatsanis LP, Xenakis M, Pavlos E (2015) 
Complexity of Economical Systems, Journal of Engineering Science and 
Technology Review 8: 41- 55.

47.	 Fraser AM, Swinney HL (1986) Independent coordinates for strange 
attractors from mutual information, Phys Rev A 33: 1134-1140.

48.	 Chapman SC, Hnat B, Rowlands G, Watkins NW (2005) Scaling collapse 
and structure functions: identifying self-affinity in finite length time series. 
Nonlinear Processes in Geophysics 12: 767-774.

49.	 Abramenko VI (2002) Solar MHD turbulence in regions with various levels 
of flare activity. Astron Rep 46 : 161-171.

50.	 Tsallis C (2004) Dynamical scenario for nonextensive statistical mechanics. 
Physica A 340: 1-10.

51.	 Umarov S, Tsallis C, Steinberg S (2008) On a q-Central Limit Theorem 
Consistent with Nonextensive Statistical Mechanics. MilanJMath 76: 307-
328.



Citation: Iliopoulos AC (2016) Complex Systems: Phenomenology, Modeling, Analysis. Int J Appl Exp Math 1: 105. doi: https://doi.org/10.15344/ijaem/2016/105

52.	 Takens F (1981) Detecting strange attractors in turbulence. Lectures Notes 
in Mathematics 898: 366-381.

53.	 Pavlos GP, Athanasiu MA, Diamantidis D, Rigas AG, Sarris ET (1999) 
Comments and new results about the magnetospheric chaos hypothesis. 
Nonlin Proces Geophys 6: 99-127.

54.	 Theiler J (1991) Some comments on the correlations dimensions of 1/fa 
noise. Phys Lett A 155: 480-493.

55.	 Kantz H, Schreiber T (1997) Nonlinear Time Series Analysis (Cambridge 
University Press).

56.	 Theiler J, LuDanK S, Longtin A, Galdrikian B (1992a] Using surrogate data 
to detect nonlinearity in time series”, in Nonlinear Modeling and Forecasting, 
vol. XII of SFI studies in the Sciences of Complexity, eds.  Casdagli M. and 
Eubank S.  (Addison-Wesley, Reading, Mass) pp. 163-188.

57.	 Theiler J, LuDanK S, Longtin A, Galdrikian B (1992b) Testing for nonlinearity 
in time series: the method of surrogate data. Physica D 58: 77-94.

58.	 Schreiber T, Schmitz A (1996) Improved surrogate data for nonlinearity test. 
Phys Rev Lett 77: 635-638.

59.	 Pavlos GP, Karakatsanis LP, Xenakis MN, Pavlos EG, Iliopoulos AC, et al. 
(2014) Universality of Tsallis Non - Extensive Statistics and Time Series 
Analysis: Theory and Applications: Physica A 395: 58-95.

60.	 Iliopoulos AC, Pavlos GP, Athanasiu MA (2008) Spatiotemporal Chaos 
into the Hellenic Seismogenesis: Evidence for a Global Strange Attractor, 
NPCS 11: 274-279.

61.	 Iliopoulos AC, Pavlos GP (2010) Global Low Dimensional Seismic Chaos in 
the Hellenic Region. IJBC 20: 2071-2095.

62.	 Iliopoulos AC, Pavlos GP, Papadimitriou EE, Sfiris DS, Athanasiou 
MA, et al. (2012) Self Organized Criticality, intermittent turbulence and 
non-extensivity revealed from seismogenesis in North Aegean area. 
International Journal of Bifurcation and Chaos 22: 1250224.

63.	 Pavlos GP, Iliopoulos AC, Athanasiou MA, Karakatsanis LP, Tsoutsouras 
VG (2011a) Complexity in Space Plasmas: Universality of Non-equilibrium 
Physical Processes, in Modern Challenges in Nonlinear Plasma Physics, 
Ed. D. Vassiliadis, AIP Conf. Proc., Volume 1320: 77-81.

64.	 Pavlos GP, Iliopoulos AC, Tsoutsouras VG, Sarafopoulos DV, Pavlos EG, et 
al. (2011b) First and Second Order Non-equilibrium Phase Transition and 
Evidence for Non-extensive Tsallis Statistics in Earth’s Magnetosphere. 
Physica A 390: 2819-2839.

65.	 LP Karakatsanis, GP Pavlos (2008) Self organized criticality and chaos into 
the solar activity, Nonlinear Phenom. Complex Syst 11: 280-284.

66.	 Karakatsanis LP, Pavlos GP, Iliopoulos AC, Tsoutsouras VG (2011) 
Evidence for Coexistence of SOC and Chaos processes in the Solar Flare 
Dynamics”, in Modern Challenges in Nonlinear Plasma Physics, Ed. D. 
Vassiliadis, AIP Conf. Proc., Volume 1320: 55-64.

67.	 Pavlos GP, Karakatsanis LP, Xenakis MN (2012a) Tsallis non-extensive 
statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part 
one: sunspot dynamics, Physica A 391: 6287–6319.

68.	 Pavlos GP, Karakatsanis LP, Xenakis MN, Sarafopoulos D, Pavlos EG 
(2012b) Tsallis statistics and magnetospheric self-organization. Physica A 
391: 3069-3080.

69.	 Karakatsanis LP, Pavlos GP, Xenakis MN (2013) Tsallis nonextensive 
statistics, intermittence turbulence, SOC and chaos in the solar plasma. 
Part two: solar flare dynamics, Physica A 392: 3920-3944.

70.	 Pavlos GP, Iliopoulos AC, Zastenker GN, Zelenyi LM, Karakatsanis M, et al. 
(2015) Tsallis Non-extensive Statistics and Solar Wind Plasma Complexity. 
Physica A 422: 113-135.

71.	  Patsourakos S, Georgoulis MK, Vourlidas A, Nindos A, Sarris T (2015) The 
major geoeffective solar eruptions of 7 March 2012: Comprehensive Sun to 
Earth Analysis, in press to The Astrophysical Journal., 

72.	 Aifantis EC (1987) The physics of plastic deformation, International Journal 
of Plasticity 3: 211-247.

73.	 Iliopoulos AC, Nikolaidis NS (2015a) Aifantis E.C Portevin Le Chatelier 
Effect and Tsallis Non-extensive Statistics. Physica A 438: 509-518.

74.	 Ananthakrishna G (2007) Current theoretical approaches to collective 
behavior of dislocations Physics Reports 440: 113-259.

75.	 Ovid’ko IA (2016) Aifantis EC. Rev Adv Mater Sci  35: 1-24.
76.	 Iliopoulos AC, Nikolaidis NS, Aifantis EC (2015b) Analysis of Serrations and 

Shear Bands Fractality in UFGs. Journal of the Mechanical Behavior of 
Materials 24: 1-9,.

77.	 Iliopoulos AC, Pavlos GP, Magafas L, Karakatsanis L, Xenakis M, et al. 
(2015c) Tsallis q-triplet and Stock Market Indices: The cases of S & P 500 
and TVIX. Jestr 8: 34-40. 

Int J Appl Exp Math                                                                                                                                                                                                IJAEM, an open access journal                                                                                                                                          
                                                                                                                                                                                                                                    Volume 1. 2016. 105  

       Page 11 of 11

78.	 Pavlos GP, Iliopoulos AC, Karakatsanis L, Xenakis M, Pavlos E (2015c) 
Complexity of Economical Systems. Jestr 8: 41-55.

79.	 Pavlos GP, Karakatsanis LP, Iliopoulos AC, Pavlos EG, Xenakis MN, et 
al. (2015d) Measuring Complexity, Nonextensivity and Chaos in the DNA 
Sequence of the Major Histocompatibility Complex, Physica A 438: 188-
209. 

80.	 Meyers RA (2012) Mathematics of Complexity and Dynamical Systems, 
Springer.

81.	 CR Shalizi (2006) Methods and Techniques of Complex Systems Science: 
An Overview, in Complex Systems Science in Biomedicine, Eds. T.S. 
Deisboeck and J.Y. Kresh, Springer, 33-114.

82.	 Stanley HE, Amaral LAN, Gopikrishnana P, Ivanova Pch, Keittb TH, et al. 
(2011) Scale invariance and universality: organizing principles in complex 
systems, Physica A 281: 60-68.

83.	 Pavlos GP, Iliopoulos AC, Karakatsanis LP, Tsoutsouras VG, Pavlos EG 
(2011) Complexity Theory and Physical Unification: From Microscopic to 
Macroscopic level, Chaos Theory: Modeling, Simulation, and Applications, 
(Eds.) Skiadas C.H., Dimotikalis I. and Skiadas C., pp. 297-308, World 
Scientific Publishing Co, 2011.


