
Abstract

Estimation of moments such as the mean and variance of populations is generally carried out through 
sample estimates. Given normality of the parent population, the distribution of sample mean and sample 
variance is straightforward. However, when normality cannot be assumed, inference is usually based on 
approximations through the use of the Central Limit theorem. Furthermore, the data generated from 
many real populations may be naturally bounded; i.e., weights, heights, etc. Thus, a normal population, 
with its infinite bounds, may not be appropriate, and the distribution of sample mean and variance is 
not obvious. Using Bayesian analysis and maximum entropy, procedures are developed which produce 
distributions for the sample mean and combined mean and standard deviation. These methods require 
no assumptions on the form of the parent distribution or the size of the sample and inherently make use 
of existing bounds.
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Introduction

Population means and variances are generally estimated using 
sample estimates. If the parent population meets the requirements for 
normality, the distributional derivation of sample statistics such as the 
mean and variance are straightforward. However, the data generated 
from many real populations is typically bounded or significantly 
skewed. Weights and heights, for example, are strictly non-negative 
values, but are generally unbounded in the positive direction. Thus, 
a normal distribution characterized by a symmetric shape and 
infinite bounds may not be appropriate. Estimation from such data 
is traditionally addressed using large sample theory in conjunction 
with the Central Limit Theorem. While this solution allows normal 
theory to be applied to non-Gaussian populations, the amount of data 
necessary to implement such an approximation is often unavailable in 
real samples. Furthermore, the normal distribution assumed with this 
technique cannot account for any natural bounding which may occur.

By using the methods of Bayesian analysis and maximum entropy, 
procedures can be developed to produce probability distributions for 
sample statistics such as the mean and variance. These methods are 
non-parametric and require no distributional assumptions or sample 
size specifications. In addition, any naturally occurring bounds are 
inherently incorporated into the estimation process. Estimation can 
be carried out either independently for the mean or simultaneously 
for the mean and variance through the construction of a joint 
distribution. In this paper, the aforementioned procedures will be 
developed and demonstrated for the population mean and standard 
deviation.

Methods

In each of the following analyses, maximum entropy techniques 
will be used to determine the likelihood component required for a 
Bayesian posterior distribution given by:

where y is the parameter of interest, x is the observed data, and C is 
any prior information, p(x|y,C) and p(y|C) are the likelihood and prior 
probabilities constrained by C, respectively, and the denominator is a 
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normalizing factor representing the total probability over the domain 
of the data, [a, b].

In 1948, Claude Shannon, working for Bell Telephone Laboratories 
on communication theory [1], found that the measure of uncertainty 
for a discrete distribution is:

for the probabilities pi. H(pi), or the entropy, was extended to the 
continuous case by Kullback and Leibler [2] as:

where a and b are the lower and upper bound on x, respectively, 
and m(x)=1/(b-a) is a reference distribution (Price and Manson 
[3]). While equation (3) provides a measure of the uncertainty for 
a specified distribution, it can also be maximized subject to known 
constraints on pi to identify the most uncertain distribution. Note 
that this process produces an entire distribution, not just a single 
probability point.

Distribution of the Mean

Nonparametric distributions for the mean and standard deviation 
were previously considered by Gull and Fielden [4]. While Bayesian 
analysis and maximum entropy were used in that work, the authors 
assumed convenient parametric forms (Gaussian) for the prior 
distributions, as well as, the reference distribution of the entropy. 
In this paper, the distributions are derived based solely on the 
assumptions that the relevant population moments exist and that the 
data are bounded.
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For statistically independent data, the solution for a single data 
point can be found and generalized to a larger sample size. Let μ be 
the mean and x1 be a sample data point. From equation (1):

To determine the likelihood p(x1|μ), the entropy in the form given 
by equation (3) is maximized with the constraint:

resulting in the solution:

Normalizing equation (6) gives:

An analytical derivation of the LaGrange multipliers is not possible 
in this case. Since the solution must be found numerically and is 
computationally intense, it is convenient to solve the problem once for 
the generic bounds [-1, 1]. Any real problem can then be transformed 
to these bounds for an appropriate solution. The numeric solution 
for lambda can be obtained by substituting equation (7) into the 
constraint (5). Using this solution, the likelihood for each data point 
can be determined and then combined with a specified prior to derive 
the posterior distribution, p(μ | xn).

Joint Distribution of the Mean and Standard Deviation

The techniques given above can also be carried out for the two 
dimensional joint distribution of the mean and standard deviation. 
This requires two LaGrange multipliers which must be obtained 
numerically. As was the case with the mean, it is convenient to solve 
the problem once for the normalized bounds [-1, 1] and subsequently 
develop the distributions for real data sets after they are translated 
into this scale.

From Bayes theorem, the probability of μ and σ given the data x1 is:

and the entropy is:

Equation (9) is then maximized subject to the constraints:

                                                                                                                 

The maximization problem solution is:

Using the normalization condition on p(x1 | μ, σ), λ0 evaluates to

Equation (14) has some interesting properties. First, the partial 
derivatives of λ0 with respect to λ1 and λ2, generate the constraint 
equations. Secondly, the equation is a “cup” function with a minima 
at the solution for the λi’s which can be found through numerical 
techniques.

 
For convenience, the data bounds are again set to [-1,1]. Investigation 

of the probability plane of μ and σ will show that the domain for the 
probability function will be defined by a semicircular region of radius 
1 which extends from -1 to 1 on the μ axis, and from 0 to 1 on the σ 
axis (Figure 1). This follows from the relationship between the mean 
and standard deviation. The probability function must be equal to 0 
on and outside of these bounds.

 
All computations were written and carried out using standard 

ANSI C programs compiled under Linux 2.4. Program codes as well 
as a more detailed derivation of the distributions above may be found 
at . http://www.uidaho.edu/ag/statprog.

Demonstration

The techniques described above are demonstrated here using data 
collected from a nutritional dairy trial. The study was conducted as a 
cross-over design with two dietary treatments, two treatment periods, 
and four animals. For the purposes of this demonstration, only the 
control treatment (standard diet) will be considered. Given a sufficient 
wash out period between treatments, the data from each period can 
be combined resulting in n=4 data points (Table 1). Without making 
undo distributional assumptions, devices such as large sample theory 
and the Central Limit Theorem are clearly not useful in this case. 
Furthermore, the data to be analyzed, milk yield (kg/day), is bounded 
with a strict lower limit of zero and a conceptual upper limit of, say, 
no more than 50 kg/day.
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Figure 1. The domain for the mean, μ, and the standard deviation, σ 
using data normalized to the scale [-1, 1].

Cow # Milk Yield (Kg/Day)

1 28.16727

2 30.31675

3 33.48435

4 23.26013

Table 1: Milk yields for four dairy cows
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Mean

As was stated earlier, the LaGrange multiplier, λ, must be 
determined before the posterior distribution of the mean can be 
developed. To simplify this process, the problem was solved once for 
the general bounds [-1, 1]. This allows any real problem to be scaled to 
these generic bounds for determining λ and the associated likelihood. 
The problem is then rescaled back into the original units prior to 
obtaining the final probability distribution. The numeric solution for 
λ, as a function of the scaled μ, is shown in Figure 2. After computing 
the likelihood, a uniform prior for μ (the most uncertain distribution 
that can be used here) was assumed and applied to equation (1). The 
resulting posterior distribution for mean milk production is shown 
in Figure 3. The most probable value for μ was 28.8 kg/day with 95% 
credible bounds of [17.8, 37.6]. The distribution was slightly skewed 
towards zero due to the correct use of the bounding conditions that 
truncated milk yield at zero.

Joint Distribution for the Mean and Variance

Prior to estimation, values for the two LaGrange multipliers were 
determined numerically. Since the 2-dimensional problem was time 
consuming, a 100 x 100 matrix of λi values within the standardized 
semicircular domain for μ and σ was computed once and then stored. 
Estimation of the joint μ, σ distribution for this or any other data set 
could then be computed quickly without recalculating the λi values.

Assuming a joint uniform prior distribution for μ and σ over the 
domain of the data, a posterior probability surface was developed as 
shown in Figure 4a with a corresponding contour plot given in Figure 
4b. The peak of the surface (μ = 28.8 and σ = 5.3 kg/day, respectively) 
represents the most probable values for both parameters while the 
surrounding contours form most credible regions. While these 
could be used for parameter inference, a simpler interpretation can 
be gained through integration of the surface. The resulting marginal 
distributions for μ and σ are given in Figure 5. Based on these marginal 
distributions, the 95% credible interval for μ and σ were [21.7, 35.4] 
and [3.3, 13.1], respectively. Although the most probable value for μ is 
the same as that given earlier, the interval is somewhat narrower. This 
is because more information was assumed for the joint estimation 
of μ and σ , i.e. that both the first and second moments of the data 
existed and also that they were bounded. Thus, the domain of possible 
distributions over which the entropy was maximized is reduced and 
the resulting marginal distribution for μ displayed less uncertainty.
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Figure 2: The numerical solution for the LaGrange multiplier, λ, as a 
function of the mean, μ, normalized to the scale [-1, 1].

Figure 3: The non-parametric posterior probability distribution for the 
mean milk yield of four cows.

Figure 4: a) The non-parametric posterior probability surface for the 
joint estimation of the mean and standard deviation of milk yield in 
four cows and b) the corresponding contour region.

Figure 5: continue......
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           (b)

             (a)
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Conclusion

Procedures have been developed and demonstrated which generate 
nonparametric probability distributions for the mean and joint mean-
variance combination. Only minimal assumptions on the existence 
of relevant moments and bounds for the data are required for the 
purpose of estimation. The procedures are valid for non-Gaussian 
parent populations and do not rely on any sample size requirements.
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Standard Deviation of Milk Yield (kg /day)
Figure 5: The non-parametric marginal posterior probability 
distribution of a) the mean and b) the standard deviation of milk yield 
in four cows.
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