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Abstract

The mean-variance formulation by Markowitz in the 1950s paved a foundation for modern portfolio
selection analysis in single period. The analytical optimal solution to the mean-variance formulation
in multiperiod portfolio selection has been considered. However, the return process of the portfolio are
still assuming to be i.i.d processes. In this paper, we consider optimal mean-variance portfolio problem
in multiperiod with time series return processes. An analytical optimal solution is derived by dynamic
programming to maximize an utility function of the expected value and the variance of the terminal
wealth. The derived analytical optimal solution is expressed by expected value and variance of time series
return processes. Therefore, we can observe the time series effect on the optimal solution of multiperiod

portfolio.
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The mean-variance formulation for modern portfolio seletion
analysis in a single period have been widely developed (see e.g
Sharpe et al. [1]. In the i.i.d setting, the analytical optimal solution
to the mean-variance formulation in multiperiod portfolio selection
has been also considered by many authors (see e.g. Li et al. [2], Li and
Ng[3] and Samuelson[4]. In this section, we consider a capital market
with with (n + 1) risky securities, with random rate of returns. An
investor joins the market at time 0 an initial wealth x. The investor
can allocate among the (n + 1) assets. The rate of risky securities at
time period t are denoted by a vector [e, = el,e,...,e"]", where el
is random return for securities at time period ¢ are denoted by a
vector t. Return e has a known mean E(e) has a known mean
E(e,) = Ee,0 s Ee,1 ,...,Ee!' and a known convariance

Oi00 -+ Oion

cov(e,) =

O

t,0n o,

tonn

Let x,be the wealth of investor at the beginning of the ¢ the period.,
and let u,,i=1,2,...,n, beamount invested in the i th riskey asset
at beginning of the ¢ th time period. The amount invested in the 0 th
riskey asset at the beginning of the ¢ th time period is equal to
x, = —Z:.’:l ;. An investor is seeking a best investment strategy,
u, = I:u: ul ..l ] 'fort =0,1,2,..T-1, such that (i) the
expected value of the terminal wealth x, E(x), is maximized if the
variance of terminal wealth, Var(xl), is not greater than prescribed
risk level, or (ii) the variance of terminal wealth, Var(x ), is maximized
if expected terminal wealth, E(xT), is not smaller than a prescibed
level. Mathmatically, a mean-variance formulation for multiperiod
portfolio selection can be posed as one of following two forms:

(P1(0)) :max E(x; )

s.t Var(x;) <o

n n

_ i iN 0

Xy = Zezut + (xt - Zuz )et
i=1 i=1

=e'x, +pu, t=01,..T-1 O

(P2(€)) : min Var(x,)
s.t E(x,) =€

n n

_ i il .o

X = Zetut T X _Zut €
i=1 i=1

=e'x, +P['ut t=0,1,..T-1 @
Where
1 2 n 1 0 2 0 n o\
Pt :[pt’pt sees Py ] =[(et € )’(et -¢ )""7(et -¢ )] -(3)

Notice that E(e,e,) = Cov(e,)+E(e,)E(e,) . We assume that
E(ee) is positive definite for all time periods, that is,

E{(e!)’} E(e'e) E(e'e)
01 N2 0 n
By B@eD EBUET o B | g
E(ele)  E(el'e) E{(e/)’}
The following holds from equation (4):
E{(¢)’} E(e'P)
E(¢/P) E(BFR)
1 o ... O 1 -1 ... -1
-1 1 .. 0 10 1 ... 0
= E(ee)
-1 0 .. 1 0O 0 .. 1
vt=0,1,..T-1 (5)
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Forthermore, we have the followings from equation (5):

E(PtP >0, Vt=0,1,..T-1 ©)

and
E((¢")’)-E(¢/P)E"(PE)E(e/R) >0 V=0,L..T-1 ()

An equivalent formulation to either (P1(c)) or(P2(€)) in generating
efficient multiperiod portfolio policies is

(E(w)) : max E(x, )-wvar(x,)

stx,=e'x, +Pu  t=0,1,2,...,T-1 (s

All three problem (P1(0)),(P2 (€)), and (E(w)) are difficuties to

solve directly. The optimal multireriod portfolio policy for problem

(E(w)) will firest be derived. The solution to problem (P1(¢)) and(P2

(e)) will then be obtained based on relationships between (P1(0)),(P2

(€)), and (E(w)). Define IT (w) to be the set of optimal solutions of
problem (E(w)) with given w, that is

IT, (w) = {r|m is maximizer of (A(E, w))}. (9)
DeLﬁne
U(E(x;)), E(x,))

=E(x,)-wVar(x; )
= —wB(x; ) *[wE® (x, ) FE(x, )].

It is obvious that U is a convex function of Ex;) and E(x,). The
following auxiliary problem is now constructed for E(w),

(A(,®) : max E{-ox; +1x,}

— 0 '
stx, =ex +Pu,

(10)

(11)
t=0,1,2,..,T-1.

Define IT, (A, w) to be the set of optimal solutions of problem (A (A,
w)) with given X and w, that is

IT, \,w) = {m|m is maximizer of (A(\, w))}. (12)
Denote 2D
d(n,w) = OU(E(x;), E(x, ))I .
OE(x, ) (13)

= 1+2wEB(x; )| »

Now we can introduce the fillowing results (see also Reid[5])

Lemma 1: For any n* € I (w), ©* € II,(d(T*, w)w).

Lemma 2: Assume m* € I1, (\*,w). A neceassry condition for n* €I,
(w)isA* =1+ 2 wE(x,)|,

The optimal solution of auxiliary problem (A(\, w)) can be derived
analytically using dynamic programing. The dynamic programming
algorithim starts from stage T-1. For given x, the optimization
problem is given as follow ’

max J(u,_, | x,_,)

=max E{-ox; +1x,}

(14)
=max{wE{e; ,}"}x7, + AE(e; v, )
HAE(P,) = 20x, E(e]+F, )y~ oup \E(Br B ity .
Optimal u,, can be obtained by solving ATy [ Xr0) 0 with

du,_,

* — Al 2/
up, =E I(PT—II)T—I)[E(I)T—I)E_ E(6271PTf1 W] (15)

Substituting u;_, back to J; ., ,, , we have the optimal cost-to-go
atgiven x|

T () =—a[E((¢, ) ~E( P )E" (B, P )E(e P, )
H(xm)__w[ ((em) - (eH T—l) ( T-1 T—l) (eT—l T—l)fo‘
+’1[E(eg-1 )= E(E—l )E_l (PT—IPT'—I )E(e(T)—lpT—l )

Y ,
+EE(PT—1)E I(Prflprl )E(PTq) (16)

The derived utility function has a similar form at stage £, 0 < t < T-1,
to the original utility function has a similar form at staget T. We can
derive the optimal portfolio decision and the optimal cost-to-go for
given x, at stage £, 0 < t < T-2, in a similar manner,

AT 1 (E(e)E")(P.P)E(e]P)
2011, (E(e)’ —E(e,P)E"(P.P)E(¢,P,)
-E"(PP)E(e/P)x,

u(x)=E"(PP)E(P) (a7

and

T3 () =—lE((e} ) —E(e! POE (BP)E(L B (13
+A[E(e}) — E(P)E ™ (B F)E(eLP)]x,
A BB (B E)ER).
w

Analytical Solution for time series

—+

Time series return process in econometric modeling have been
considered mainly in signale period portfolio selection problem (see
e.g. Gourieroux [6] and Gourieroux and Jasiak [7]. In this section, we
consider the optimal portfolio policy for auxiliary problem (A(A,w))
at each time period ¢ is of the following form

uX(x;y) =-Kx,+v(y) t=0,1,.T-1 (19)
Where

s (20)

@
K, =E"(RE)E(¢'R) ey
T-1 Al ) ' (22)
b,(=71 1175 [E (BEIE®)
k=5 1= 0,1,2,.,T-1

4} =E())-E(P)E” (B.E)E(R) @)

A, =E(e)") ~E(e/R)E (BF)E(e/F,) (24)
with the following boundary condition

v, (Y)="5 E'(P,P) EP,) @s)

Wealth of investor is expressed as recursive from substituting u?
into x,,

xT+1(7/) = (eto -B'K,)X[ (7/) + B'vt (7/) (26)
Squared on both sides of (%6) yieldsv ‘
X0 (1) =1(e])]-2¢/FK, + KRR K 1/ (7) @)

+2(et0 _Ptl)xt (y)Pt'Ut (}/)+Ut (}/)'PtPtVUt (}/)
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Than, we take expected values and substitute time series return
process to get time series effect on the optimal solution of multiperiod
portfolio.

First, wejconsiderrMA(l) model
P=P+BP_ +,th (28)
We assume E(P) =0, 1; are mutually independent, so that
E(P ) E(P )E(P DA (29)

xisF- measurable and P, is 1ndependent of £, (P,is not dependent).
We take expections on both side of wealth of investor (26)

E(xt+1 (7/)) = E((eto - R'Kt )xt (7) + E'Vt (7))

30)
0 , )
= E(e"x, )-E(x, P)K, + E(P'),
Taking expection on both sides of (27), we have
E(x}, ()= E((¢])’ -2¢/F K, + K,FPK,)
+2(¢] - BK)x,(7)Bv,(7)+v,(y) BEV,(7))
=E((¢])’x)-2E(e/x'P)K, + K,E(PP)K, (31)

+2(E(¢/x,F)-K,E(RP)K,)v, +v,E(BE)v,.
Substituting time series £, = F, + BE_ + 44, E(x, (y)) and E(xm( )
we have

E(x,,(7)) = E(elx,) = E(P)E(x) = E(x,F.)B —E(x,11)+ E(P)v, (32)

E(X (1) =E((€')'x))=2(E(e)x})E(R) + E(e] B ,x)B + E(€ 1,x}))
+K (EPP’)E(xZ)+E(P)E(P x2)+ E(P)E(,x?))
+BE(P.x})E(P)()+ BE(P_B_x])B + BE(P._x] 1)
+E(ux))E(B)+ E(u.B_,x; )B +E(u, 130 )K,

+ Z(E(ef)P, )E(x,) —E( e x, P )B E(et xt,u,))

~ K (E(RE)E(x)+ E(R)E(Ex)+E(B)E(1x,)

+BE(Px))E(P)+BE(P_P x)B +BE(P x u)

+E(ux,)E(P) +E(ﬂ,i; x )B' +E(u, 1), +v.E(PP v,
Here, E(P x,) and E(P

(33)

P x, ) are unknown. Let

Y, = P "X, ,z, = P_ P’ x,. Then, we constitute recurrence relation
of matrix from x,, y, | andZM‘
Denote
X, H_, F, 0)\x, o,
Vo=l G S O v |+ s | (34)
z, N, M, 0}z, o,
Where
Ve = éL]xt, Z = Pt—lé'—lxt
H =e' —(B +u)K, F,=BK, 5 =Ey, 35
G = —(P +u)K)P,J,=BK,P,s,=Pv,P
M, =(¢) —(F +u)K)ER),N, = BK,BF ,0,= Pv.BF.
This final form is given by »
X H, F, 0 0.,
v, |=|1d-| G, J_, 0]|L A
4 N, M, , O o,

where Id is unit matrix and L is lag operator. Therefore, we see that

Taking expection and simplifying, we have

51—1 P111+P Bvr]+/uttl
Els_ |=E Py, P, +P,B"v,_ P +,u”1P1
O levz B 1P/1+szzB VHP +,u[ 1Vi- 1Pz 18
,url (-1
=E Ptl"t 131 (37)
F;v—lvz P ]Rl+ﬂ;—] t—le IP'

Next, we consider MA(2) model
P=P+BP +BF,

Let ¥/, 7,2,z and Z be the following form
1 ~ ~

yt = Ptflxt’yt = E*th

(38)

1 _ ~ ~1 2 ~ ~1 3 ~ ~1
z,=b . F.x, z; =B F,x ,z, =F_,F ,x,

These are neceassry to solve optimal solution with MA(2) model
. Then, similarly in MA(1) case, we can express the following matrix

form by x, y/, th, and Zf

* H,_, F;l—l EEI 0 0 0} x.,
v G, JY J2 0o 0 o0fy,
vl o o un o v N
z! N, M M 0 0 Oof z,
z; N M50 0 0 0]z,
z; N, 0 MZ M7 0 0z,
0 0 0 0 0 0\( x,_, .
0 0 0 0 0 ol »y, s
0 0 0 0 0 ol ¥y, . s? .(39)
0 0 0 0 0 0| z, o)
N2, MY, MY M M2, 0 thfz o)
N, MY, M M7, MZ 0z, lop
Further Discussion
In this section, we consider the general MA(t) model
P=B+B,B, +..+B,bB = Z BB, (40)
Substituting P = Z B(i) > intox, , we have
i=0
Xy = (¢ —K.P)x, + Ry,
(41)

'
= etO_KtZB(i)R—l)xt + By,

We need £( le ) and £(Z [P, *.-+) 10 solve the optimal solution
of multiperiod portfolio. Let yi and 7 be given by the follwing

equations
0
(42)
y B lxt k
G 0 or
Lj)
vl =F, B—j X k- (43)

Then, we see that
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B I B
X, sz = (eto—l _Kt—l ZB(I)Ptfl—l) 1:;72 + Pt—l Vi sz =
. =0 . .
B B B
(44)
1
-~ P 1
F_F_x,_, + Z By, b, o
5 i—2 2
£ - o
e | B, |—-K,, Z B(I)ZI(L'IZ) +
: = o’
I)“ —1 .
i,1—
2 Bz
im1
t—1 oo
(45)

s _
o= (VH' ZB(D PPuy).
i=0
Taking expectation and simplyfiing, we have

-1 o o oo
E(c")= E(VH'ZB(I') F_ Prs)=0_E(B_ Pi-s Pis). (46)
=0

In this case, we see that

5 5 52 S
Pz—l Pt—l ‘xt—l Pt—l yt—l Pt—l yt—]
25 22) 22)
_ = i b Z Ttz
_(er 1_[':4 KH) . . . .
(B .2) (1) (47)
Vb Z 21
{ ~ o ( - Y .
z B(k)Pt—k—IPtflR—l X z B(k)Pt—k—IPt—IPO X
p =1
_Kr—l
1 -~ - t - -
ZB(k) VBB x ZB(k)Pt—k—l B X,
=1 =1
Syt O
+ :
0, 0,

(t.1) (t,t)

Now we can not transform this matrix into easy to solve expression
like substituting MA(1) model or MA (2) model. So we need to
transform this matrix into expression with independent coeflicients,
x,,,,andZ" .

This problem will be left for the further consideration.

We also have to consider the numerical study to demonstrate the
adoption of the multiperiod mean-variance formulations for time
series return processes and the efficiancy of the solution methods
derived in this paper.

We would like to derive optimal solution case that we have an

additional restriction, namely casuality from another index to apply
our method to pension investment problem, which will be also the
further work.
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